[1] Webster, R.G. (1999) 1918 Spanish influenza: The secrets remain elusive. Proceedings of the National Academy of Sciences, USA, 96(4), 1164-1166.
[2] Li, Q., Kash, J.C., Dugan, V.G., Wang, R.X., Jin, G.Z., Cunningham, R.E. and Taubenberger, J.K. (2009) Role of sialic acid binding specificity of the 1918 influenza virus hemagglutinin protein in virulence and pathogenesis for mice. Journal of Virology, 83(8), 3754-3761.
[3] Matrosovich, M.N., Klenk, H. D. and Kawaoka, Y. (2006) Receptor specificity, host-range, and pathogenicity of influenza viruses. In Yoshihiro Kawaoka (ed.) Influenza Virology: Current Topics, Caister Academic Press, 95-137.
[4] Zambon, M. (2007). Lessons from the 1918 influenza. Nature Biotech, 25, 433-434.
[5] Gambaryan, A. Tuzikov, A., Pazynina, G., Bovin, N., Balish, A. and Klimov, A. (2006) Evolution of the receptor binding phenotype of influenza A (H5) viruses. Virology, 344(2), 432-438.
[6] Yamada, S., Suzuki, Y., Suzuki, T., Le, M. Q., Nidom, C. A., Sakai-Tagawa, Y., Muramoto, Y., et al. (2006) Haemagglutinin mutations responsible for the binding of H5N1 influenza A viruses to human-type receptors. Nature, 444(7117), 378-382.
[7] Matrosovich, M., Tuzikov, A., Bovin, N., Gambaryan, A., and Klimov, A., et al. (2000) Early alterations of the receptor-binding properties of H1, H2, and H3 avian influenza virus hemagglutinins after their introduction into mammals. Journal of Virology, 74(18), 8502-8512.
[8] Bateman, A.C., Busch, M.G., Karasin, A.I., Bovin, N., and Olsen, C.W. (2008) Amino acid 226 in the hemagglutinin of H4N6 influenza virus determines binding affinity for alpha2, 6-linked sialic acid and infectivity levels in primary swine and human respiratory epithelial cells. Journal of Virology, 82(16), 8204-8209.
[9] Wan, H., Sorrell, E.M., Song, H., Hossain, M.J., Ramirez-Nieto, G., et al. (2008) Replication and transmission of H9N2 influenza viruses in ferrets: Evaluation of pandemic potential. PLoS ONE, 3(8), e2923.
[10] Rogers, G.N. and D’Souza, B.L. (1989) Receptor binding properties of human and animal H1 influenza virus isolates. Virology, 173, 317-322.
[11] Matrosovich, M.N., Gambaryan, A.S., Teneberg, S., Piskarev, V.E., Yamnikova, S.S., et al. (1997) Avian influenza A viruses differ from human viruses by recognition of sialyloligosaccharides and gangliosides and by a higher conservation of the HA receptor-binding site. Virology, 233(1), 224-234.
[12] Reid, A.H., Janczewski, T.A., Lourens, R.M., Elliot, A.J., Daniels, R.S., Berry, C.L., Oxford, J.S. and Taubenberger, J.K. (2003) 1918 influenza pandemic caused by highly conserved viruses with two receptor-binding variants. Emerg Infect Disease, 9(10), 1249-1253.
[13] Shen, J., Ma, J. and Wang, Q. (2009) Evolutionary trends of A(H1N1) influenza virus hemagglutinin since 1918. PLoS ONE, 4(11), e7789.
[14] Srinivasan, A., Viswanathan, K., Raman, R., Chandra- sekaran, A., Raguram, S., Tumpey, T.M., Sasisekharan, V. and Sasisekharan, R. (2008) Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proceedings of the National Academy of Sciences, 105(8), 2800-2805.
[15] Soundararajan, V., Tharakaraman, K., Raman, R., Raguram, S., Shriver, Z., Sasisekharan, V. and Sasisekharan R. (2009) Extrapolating from sequence–the 2009 H1N1 “swine” influenza virus. Nature Biotechnology, 27(6), 510-513.
[16] Childs, R.A., Palma, A.S., Wharton, S., Matrosovich, T., Liu, Y., Chai, W.G., Campanero-Rhodes, M.A., Zhang, Y.B., Eickmann, M., Kiso, M., Hay, A., Matrosovich. M. and Feizi, T. (2009) Receptor-binding specificity of pandemic influenza A (H1N1) 2009 virus determined by carbohydrate microarray. Nature Biotechnology, 27 (9), 797-799.
[17] Hu, W. (2009) Analysis of correlated mutations, stalk motifs, and phylogenetic relationship of the 2009 influenza A virus neuraminidase sequences. Journal of Biomedical Science and Engineering, 2(7), 550-558.
[18] Hu, W. (2010) The Interaction between the 2009 H1N1 influenza A hemagglutinin and neuraminidase: Mutations, co-mutations, and the NA stalk motifs. Journal of Biomedical Science and Engineering, 3, 1-12.
[19] Veljkovic, V., Niman, H.L., Glisic, S., Veljkovic, N., Per- ovic, V. and Muller C.P. (2009). Identification of hemag- glutinin structural domain and polymorphisms which may modulate swine H1N1 interactions with human receptor. BMC Structural Biology, 9, 62.
[20] Veljkovic, V., Veljkovic, N., Muller, C.P., Müller, S. Glisic, S., Perovic, V. and K?hler, H. (2009) Characteri- zation of conserved properties of hemagglutinin of H5N1 and human influenza viruses: Possible consequences for therapy and infection control. BMC Structural Biology, 7, 9-21.
[21] Cosic, I. (1997) The resonant recognition model of macromolecular bioreactivity, theory and application. Berlin: Birkhauser Verlag.
[22] Hu, W. (2010) Identification of highly conserved domains in hemagglutinin associated with the receptor binding specificity of influenza viruses: 2009 H1N1, avian H5N1, and swine. Journal of Biomedical Science and Engineering, 3, 114-123.
[23] Katoh, K., Kuma, K., Toh, H. and Miyata, T. (2005) MAFFT version 5: Improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33(2), 511- 518.
[24] MacKay, D. (2003) Information theory, inference, and learning algorithms. Cambridge University Press.
[25] KováccaronOVá, A., Ruttkay-Nedecky, G., Karol Haver- líK, I. and Janecccaronek, S. (2002) Sequence similarities and evolutionary relationships of influenza virus A hemagglutinins, Virus Genes, 24(1), 57-63.
[26] Gamblin, S.J., Haire, L.F., Russell, R.J., Stevens, D.J., Xiao, B., Ha, Y., et al. (2004) The structure and receptor binding properties of the 1918 influenza hemagglutinin. Science, 303, 1838-1842.
[27] Daniels, R.S., Douglas, A.R., Skehel, J.J., Wiley, D.C., Naeve, C.W., Webster, R.G., Rogers, G.N. and Paulson, J. C. (1984). Antigenic analyses of influenza virus haemagglutinins with different receptorbinding specificities. Virology, 138, 174-177.
[28] Srinivasan, A., Viswanathan, K., Raman, R., Chandrase- karan, A., Raguram, S., et al. (2008) Quantitative biochemical rationale for differences in transmissibility of 1918 pandemic influenza A viruses. Proceedings of the National Academy of Sciences, 105, 2800-2805.
[29] Stevens, J., Blixt, O., Glaser, L., Taubenberger, J.K., Pal- ese, P., et al. (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. Journal of Molecular Biology, 355(5), 1143-1155.
[30] Ayora-Talavera, G., Shelton, H., Scull, M.A., Ren, J., Jones, I.M., et al. (2009) Mutations in H5N1 influenza virus hemagglutinin that confer binding to human tracheal airway epithelium. PLoS ONE, 4(11), e7836.
[31] Stevens, J., Blixt, O., Glaser, L., Taubenberger, J.K., Palese, P., et al. (2006) Glycan microarray analysis of the hemagglutinins from modern and pandemic influenza viruses reveals different receptor specificities. Journal of Molecular Biology, 355(5), 1143-1155.
[32] Stevens, J., Blixt, O., Chen, L.M., Donis, R.O., Paulson, J.C., et al. (2008) Recent avian H5N1 viruses exhibit increased propensity for acquiring human receptor specificity. Journal of Molecular Biology, 381(5), 1382- 1394.
[33] Chandrasekaran, A., Srinivasan, A., Raman, R., Viswa- nathan, K., Raguram, S., Tumpey, T.M., Sasisekharan, V. and Sasisekharan, R. (1008) Glycan topology determines human adaptation of avian H5N1 virus hemagglutinin. Nature Biotechnology, 26(1), 107-113.