A Study of Quantum Strategies for Newcomb's Paradox

References

[1] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer,” SIAM Journal of Computing, Vol. 26, pp. 1484– 1509, 1997.

[2] L. K. Grover, “A fast quantum mechanical algorithm for database search,” Proceedings of the 28th ACM Symposium on Theory of Computing, pp. 212–219, 1996.

[3] J. von Neumann and O. Morgenstern, “Theory of games and economic behavior, third edition,” Princeton University Press, Princeton, 1953.

[4] D. A. Meyer, “Quantum strategies,” Physical Review Letters, Vol. 82, pp. 1052–1055, 1999.

[5] J. Eisert, M. Wilkens, and M. Lewenstein, “Quantum games and quantum strategies,” Physical Review Letters, Vol. 83, pp. 3077–3080, 1999.

[6] J. Du, H. Li, X. Xu, M. Shi, J. Wu, X. Zhou, and R. Han, “Experimental realization of quantum games on a quantum computer,” Physical Review Letters, Vol. 88, 137902, 2002.

[7] J. Du, H. Li, X. Xu, X. Zhou, and R. Han, “Entanglement enhanced multiplayer quantum games,” Physics Letters A, Vol. 302, pp. 229–233, 2002.

[8] J. Eisert and M. Wilkens, “Quantum games,” Journal of Modern Optics, Vol. 47, pp. 2543–2556, 2000.

[9] A. Iqbal and A. H. Toor, “Evolutionarily stable strategies in quantum games,” Physics Letters A, Vol. 280, pp. 249–256, 2001.

[10] L. Marinatto and T. Weber, “A quantum approach to static games of complete information,” Physics Letters A, Vol. 272, pp. 291–303, 2000.

[11] M. D’Ariano, R. Gill, M. Keyl, R. Werner, B. Kümmerer, and H. Maassen, “The quantum Monty Hall problem,” Quantum Information and Computing, Vol. 2, pp. 355–366, 2002.

[12] A. P. Flitney and D. Abbott, “Quantum version of the Monty Hall problem,” Physical Review A, Vol. 65, 2002.

[13] C. F. Li, Y. S. Zhang, Y. F. Huang, and G. C. Guo, “Quantum strategies of quantum measurements,” Physics Letters A, Vol. 280, pp. 257–260, 2001.

[14] A. P. Flitney, J. Ng, and D. Abbott, “Quantum Parrondo’s games,” Physica A, Vol. 314, pp. 35–42, 2002.

[15] E. W. Piotrowski and J. S?adkowski, “Quantum-like approach to financial risk: Quantum anthropic principle,” Acta Physica Polonica B, Vol. 32, pp. 3873–3879, 2001.

[16] E. W. Piotrowski and J. S?adkowski, “Quantum bargaining games,” Physica A, Vol. 308, 391–401, 2002.

[17] E. W. Piotrowski and J. S?adkowski, “Quantum market games,” Physica A, Vol. 312, pp. 208–216, 2002.

[18] E. W. Piotrowski and J. S?adkowski, “Quantum solution to the Newcomb’s paradox,” International Journal of Quantum Information, Vol. 1, pp. 395–402, 2003.

[19] H. Buhrman, R. Cleve, and W. van Dam, “Quantum entanglement and communication complexity,” SIAM Journal of Computing, Vol. 30, pp. 1829–1841, 2000.

[20] H. Buhrman, W. van Dam, P. Hoyer, and A. Tapp, “Multiparty quantum communication complexity,” Physical Review A, Vol. 60, pp. 2737–2741, 1999.

[21] R. Cleve and H. Buhrman, “Substituting quantum entanglement for communication,” Physical Review A, Vol. 56, pp. 1201–1204, 1997.

[22] R. B. Myerson, “Game theory,” Harvard University Press, Cambridge, 1991.

[23] M. J. Osborne and A. Rubinstein, “A course in game theory,” MIT Press, Cambridge, 1994.