[1] J.S. Almeida, J.A. Carrico, A. Maretzek, P.A. Noble, M. Fletcher, “Analysis of genomic sequences by Chaos Game Representation”. Bioinformatics,17( 2001), pp 429-437.
[2] V.V. Anh, K.S. Lau, and Z.G. Yu, “Recognition of an organism from fragments of its complete genome”, Phys. Rev. E, 66 (2002), art. no..031910 , pp. 1-9.
[3] V.V. Anh, Z.G. Yu, J.A. Wanliss, and S.M. Watson, “Prediction of magnetic storm events using the Dst index”, Nonlin. Processes Geophys., 12 (2005), pp. 799-806.
[4] M.F. Barnley, J.H. Elton, and D.P. Hardin, “Recurrent iterated function systems”, Constr. Approx. B, 5 (1989), pp. 3-31.
[5] M.F. Barnsley, and S. Demko, “Iterated function systems and the global construction of fractals”, Proc. R. Soc. London, Ser. A, 399 (1985), pp. 243-275.
[6] S. Basu, A. Pan, C. Dutta and J. Das, “Chaos game representation of proteins”. J. Mol. Graphics and Modelling, 15 (1998), pp. 279-289.
[7] T.A. Brown, Genetics (3rd Edition). CHAPMAN & HALL,London, 1998.
[8] P.J. Deschavanne, A Giron, J. Vilain, G. Fagot and B. Fertil, “Genomics signature: Characterization and classification of species assessed by chaos game representation of sequences”. Mol. Biol. Evol. 16(1999), pp 1391-1399.
[9] K.A.Dill, “Theory for the folding and stability of globular Proteins”, Biochemistry, 24 (1985), pp. 1501-1509.
[10] K. Falconer, Techniques in Fractal Geometry, Wiley, 1997.
[11] A. Fiser, GE Tusnady and I. Simon, “Chaos game representation of protein structures”. J. Mol. Graphics, 12 (1994), pp. 302-304.
[12] N. Goldman, “Nucleotide, dinucleotide and trinucleotide frequencies explain patterns observed in chaos game representations of DNA sequences.
[13] H.J. Jeffrey, “Chaos game representation of gene structure”. Nucleic Acids Research, 18(8): (1990), pp. 2163-2170.
[14] J.Joseph, R. Sasikumar, “Chaos game representation for comparision of whole genomes”. BMC Bioinformatics, 7(2006), pp 243: 1-10.
[15] E.R. Vrscay, “Iterated function systems: theory, applications and inverse problem”, in: Fractal Geometry and Analysis, edited by: Belair, J. and Dubuc, S., Kluwer, Dordrecht, pp. 405-468, 1991.
[16] J. Wang and W. Wang, “Modeling study on the validity of a possibly simplified representation of proteins”, Phys. Rev. E, 61 (2000), pp. 6981-6986.
[17] J.A. Wanliss, V.V. Anh, Z.G. Yu, and S. Watson, “Multifractal modelling of magnetic storms via symbolic dynamics analysis”, J. Geophys. Res., 110 (2005), art. no. A08214, pp. 1-11,.
[18] Z.G. Yu, V.V. Anh, and K.S. Lau, “Measure representation and multifractal analysis of complete genomes”, Phys. Rev. E, 64 (2001), art. no. 031903, pp. 1-9,.
[19] Z.G. Yu, V.V. Anh, and K.S. Lau, “Iterated functionsystem and multifractal analysis of biological sequences”, International J. Modern Physics B, 17: (2003), pp. 4367-4375.
[20] Z.G. Yu, V.V. Anh, and K.S. Lau, “Fractal analysis of large proteins based on the Detailed HP model”, Physica A, 337 (2004a), pp. 171-184.
[21] Z.G. Yu, V.V. Anh, and K.S. Lau, “Chaos game representation, and multifractal and correlation analysis of protein sequences from complete genome based on detailed HP model”, J. Theor. Biol., 226(3) (2004b), pp..341-348.
[22] Z.G. Yu, V.V. Anh, , J.A. Wanliss and S.M. Watson, “Chaos game representation of the Dst index and prediction of geomagnetic storm events”, Chaos, Solitons & Fractals, 31 (2007), pp. 736-746,