Back
 PP  Vol.13 No.8 , August 2022
Particle Size Effects on Antioxydant and Hepatoprotective Potential of Essential Oil from Eucalyptus camaldulensis Leaves against Carbon Tetrachloride-Induced Hepatotoxicity in Rats
Abstract: Particle size fractionation by sieving is used to optimize antioxydant potential of natural substances. The aim of the present study was to evaluate particle size effects on antioxidant and hepatoprotective potential of Eucalyptus camaldulensis essential oils (EO) on CCl4-induced hepatic damage in Wistar rats. Animals were daily orally treated with the EOs extracted by hydrodistillation from powder sieved at four particle sizes (≥355, 200 - 355, 100 - 200, ≤100 μm) and those of the unsieved powder at dose of 50 mg/Kg for 7 days. Compounds that are evaluated for these activities are hydrocarbons and oxygenated terpenes that were identified and quantified by GC/MS. Activities of enzymes markers of hepatocellular damage in serum and antioxidant enzymes in the liver homogenates were measured. In this research, EOs significantly prevented the increase in serum ALT and AST (p < 0.05), total cholesterol, triglyceride and LDL-cholesterol level in acute liver damage induced by CCl4 and significant increase level of plasma HDL-cholesterol. Also, significantly (p < 0.05) decreased the extent of malondialdehyde (MDA) formation and elevated the activities of superoxide dismutase (SOD) and catalase (CAT) liver in comparison to negative control group. The best antioxidant and hepatoprotective activities were those of EOs from two fine powder fractions (≤100 μm and 100 - 200 μm) was correlated to their high concentration in oxygenated terpenes (70.9% and 46.4%, respectively), when compared to the large particles (200 - 355 μm and ≥355 μm, with 33.3% and 41.8%, respectively) and unsieved powder (37.4%).
Cite this paper: Noumi, V. , Deli, M. , Nguimbou, R. , Baudelaire, E. , Rup-Jacques, S. , Amadou, D. , Sokeng, S. and Njintang, N. (2022) Particle Size Effects on Antioxydant and Hepatoprotective Potential of Essential Oil from Eucalyptus camaldulensis Leaves against Carbon Tetrachloride-Induced Hepatotoxicity in Rats. Pharmacology & Pharmacy, 13, 253-272. doi: 10.4236/pp.2022.138020.
References

[1]   Kim, S., Kim, D., Cho, S.W., Kim, J. and Kim, J.S. (2014) Highly Efficient RNA-Guided Genome Editing in Human Cells via Delivery of Purified Cas9 Ribonucleoproteins. Genome Research, 24, 1012-1019.
https://doi.org/10.1101/gr.171322.113

[2]   Ramachandran, A. and Jaeschke, H. (2018) Oxidative Stress and Acute Hepatic Injury. Current Opinion in Toxicology, 7, 17-21.
https://doi.org/10.1016/j.cotox.2017.10.011

[3]   Woolbright, B.L. and Jaeschke, H. (2018) Mechanisms of Inflammatory Liver Injury and Drug-Induced Hepatotoxicity. Current Pharmacology Reports, 4, 346-357.
https://doi.org/10.1007/s40495-018-0147-0

[4]   El-Sayed, E.M., Fouda, E.E., Mansour, A.M. and Elazab, A.H. (2015) Protective Effect of Lycopene against Carbon Tetrachloride-Induced Hepatic Damage in Rats. International Journal of Pharma Sciences, 5, 875-881.

[5]   Gutiérrez, R., Alvarado, J.L., Presno, M., Pérez-Veyna, O., Serrano, C.J. and Yahuaca, P. (2010) Oxidative Stress Modulation by Rosmarinus officinalis in CCl4-Induced Liver Cirrhosis. Phytotherapy Research, 24, 595-601.
https://doi.org/10.1002/ptr.2997

[6]   Dalle-Donne, L., Rossi, R., Colombo, R., Giustarini, D. and Milzani, A. (2006) Biomarkers of Oxidative Damage in Human Disease. Clinical Chemistry, 52, 601-623.
https://doi.org/10.1373/clinchem.2005.061408

[7]   Kadiiska, M.B., Gladen, B.C., Baird, D.D., Germolec, D., Graham, L.B., Parker, C.E., Nyska, A., Wachsman, J.T., Ames, B.N., Basu, S., Brot, N., Fitzgerald, G.A., Floyd, R.A., George, M., Heinecke, J.W., Hatch, G.E., Hensley, K. and Lawson, J.A. (2005) Biomarkers of Oxidative Stress Study II: Are Oxidation Products of Lipids, Proteins, and DNA Markers of CCl4 Poisoning. Free Radical Biology & Medicine, 38, 698-710.
https://doi.org/10.1016/j.freeradbiomed.2004.09.017

[8]   Palanivel, M.G., Rajkapoor, B., Senthil, K.R., Einstein, J.W., Kumar, E.P., Rupesh, K.M., Kavitha, K., Pradeep, K.M. and Jayakar, B. (2008) Hepatoprotective and Antioxidant Effect of Pisonia aculeata L. against CCl4-Induced Hepatic Damage in Rats. Scientia Pharmaceutica, 76, 203-215.
https://doi.org/10.3797/scipharm.0803-16

[9]   Sacchetti, G., Maietti, S., Muzzoli, M., Scaglianti, M., Manfredini, S., Radice, M. and Bruni, R. (2011) Comparative Evaluation of 11 Essential Oils of Different Origin as Functional Antioxidants, Antiradicals and Antimicrobials in Foods. Food Chemistry, 91, 621-632.
https://doi.org/10.1016/j.foodchem.2004.06.031

[10]   Lagouri, V., Blekas, G., Tsimidou, M., Kokkini, S. and Boskou, D. (1993) Composition and Antioxidant Activity of Essential Oils from Oregano Plants Grown Wild in Greece. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 197, 20-23.
https://doi.org/10.1007/BF01202694

[11]   Selmi, S., Rtibi, K., Grami, D., Sebai, H. and Marzouki, L. (2017) Rosmarinus officinalis Essential Oil Components Exhibit Anti-Hyperglycemic, Anti-Hyperlipidemic and Antioxidant Effects in Experimental Diabetes. Pathophysiology, 24, 297-303.
https://doi.org/10.1016/j.pathophys.2017.08.002

[12]   Ielciu, I., Frederich, M., Hanganu, D., Angenot, L., Olah, N.K., Ledoux, A., Crisan, G. and Ramona, P. (2019) Flavonoid Analysis and Antioxidant Activities of the Bryonia alba L. Aerial Parts. Antioxidants, 8, Article No. 108.
https://doi.org/10.3390/antiox8040108

[13]   Hassan, A.E., Sharaf, E.A.A., Ahmed, S.Z.E., Farah, M.K.E., Sabry, A. and Abd El-Rehim, A.E.N. (2017) VAP Score as a Novel Non-Invasive Liver Fibrosis Model in Patients with Chronic Hepatitis C. Hepatology Research, 47, 1408-1416.
https://doi.org/10.1111/hepr.12884

[14]   Kazemi, S., Shirzad, H. and Rafieian-Kopaei, M. (2018) Recent Findings in Molecular Basis of Inflammation and Anti-Inflammatory Plants. Current Pharmaceutical Design, 24, 1551-1562.
https://doi.org/10.2174/1381612824666180403122003

[15]   Herzi, N., Bouajila, J., Camy, S., Cazaux, S., Romdhane, M. and Condoret, J.S. (2013) Comparison between Supercritical CO2 Extraction and Hydrodistillation for Two Species of Eucalyptus: Yield, Chemical Composition, and Antioxidant Activity. Journal of Food Science, 78, C667-C672.
https://doi.org/10/1111/1750-3841.12113

[16]   Sliti, S., Sameh, A., Kachouri, F., Arbi Khouja, M., Abderrabba, M. and Bouzouita, N. (2015) Leaf Essential Oils Chemical Composition, Antibacterial and Antioxidant Activities of Eucalyptus camaldulensis and E. rudis from Korbous (Tunisia). Journal of Materials and Environmental Science, 2, 531-537.

[17]   Sabo, V.A. and Knezevic, P. (2019) Antimicrobial Activity of Eucalyptus camaldulensis Dehn. Plant Extracts and Essential Oils: A Review. Industrial Crops and Products, 132, 413-429.
https://doi.org/10.1016/j.indcrop.2019.02.051

[18]   Barra, A., Coroneo, V., Dessi, S., Cabras, P. and Angioni, A. (2010) Chemical Variability, Antifungal and Antioxidant Activity of Eucalyptus camaldulensis Essential Oil From Sardinia. Natural Product Communications, 5, 329-335.
https://doi.org/10.1177/1934578X1000500232

[19]   Gbenou, J.D., Ahounou, J.F., Akakpo, H.B., Laleye, A., Yayi, E., Gbaguidi, F., Baba-Moussa, L., Darboux, R., Dansou, P., Moudachirou, M. and Kotchoni, S.O. (2013) Phytochemical Composition of Cymbopogon citratus and Eucalyptus citriodora Essential Oils and Their Anti-Inflammatory and Analgesic Properties on Wistar Rats. Molecular Biology Reports, 40, 1127-1134.
https://doi.org/10.1007/s11033-012-2155-1

[20]   Dhifi, W., Bellili, S., Jazi, S., Bahloul, N. and Mnif, W. (2016) Essential Oils’ Chemical Characterization and Investigation of Some Biological Activities: A Critical Review. Medicines, 3, Article No. 25.
https://doi.org/10.3390/medecines3040025

[21]   Moghaddam, M., Mehdizadeh, L., Grumezescu, A.M. and Holban, A.M. (2017) Chemistry of Essential Oils and Factors Influencing Their Constituents. In: Grumezescu, A.M. and Holban, A.M., Eds., Soft Chemistry and Food Fermentation, Academic Press, London, 379-419.
https://doi.org/10/1016/B978-0-12-811412-4.00013-8

[22]   Baudelaire, E. (2013) Comminution and Controlled Differential Screening Method for the Dry Extraction of Natural Active Principles. Google Patent, WO2013057379A1.

[23]   Deli, M., Djantou, E.B., Ngatchic, M.J.T., Petit, J., Njintang, Y.N. and Scher, J. (2019) Successive Grinding and Sieving as a New Tool to Fractionate Polyphenols and Antioxidants of Plants Powders: Application to Boscia senegalensis Seeds, Dichrostachys glomerata Fruits, and Hibiscus sabdariffa Calyx Powders. Food Science and Nutrition, 7, 1795-1806.
https://doi.org/10.1002/fsn3.1022

[24]   Deli, M., Petit, J., Nguimbou, R.M., Djantou, E.B., Njintang, Y.N. and Scher, J. (2019) Effect of Sieved Fractionation on the Physical, Flow and Hydration Properties of Boscia senegalensis Lam., Dichostachys glomerata Forssk. and Hibiscus sa bdariffa L. Powders. Food Science and Technology, 28, 1375-1389.
https://doi.org/10.1007/s10068-019-00597-6

[25]   Deli, M., Baudelaire, E., Nguimbou, R.M., Njintang, Y.N. and Scher, J. (2020) Micronutrients and in Vivo Antioxidant Properties of Powder Fractions and Ethanolic Extract of Dichrostachys glomerata Forssk. Food Science and Nutrition, 8, 3287-3297.
https://doi.org/10.1002/fsn3.1606

[26]   Noumi, V.D., Nguimbou, R.M., Tsague, M.V., Deli, M., Rup-Jacques, S., Amadou, D., Baudelaire, E.N., Sokeng, S. and Njintang, N.Y. (2021) Phytochemical Profile and in Vitro Antioxidant Properties of Essential Oils from Powder Fractions of Eucalyptus camaldulensis Leaves. American Journal of Plant Sciences, 12, 329-346.
https://doi.org/10.4236/ajps.2021.123021

[27]   Nguimbou, R.M., Fomekong, G.C., Deli, M., Tsague, M.V., Baudelaire, E.N. and Njintang, Y.N. (2020) Enhancing the Quality of Overripe Plantain Powder by Adding Superfne Fractions of Adansonia digitata L. Pulp and Hibiscus sabdarifa L. Calyces: Characterization and Antioxidant Activity Assessment. SN Applied Sciences, 2, 1832.
https://doi.org/10.1007/s42452-020-03638-6

[28]   Stein, S., Mirokhin, D., Tchekhovskoi, D. and Mallard, G. (2002) The NIST Mass Spectral Search Program for the NIST/EPA/NIH Mass Spectra Library. Standard Reference Data Program of the National Institute of Standards and Technology, Gaithersburg, MD.

[29]   Adams, R.P. (2007) Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. Allured Publishing, Carol Stream, IL, 804 p.

[30]   Ngatchic, M.J., Njintang, Y.N., Oben, J.E. and Mbofung, C.M.F. (2013) Protein Quality and Antigrowth Effect of Protein Isolate of Mucuna (Mucuna pruriens) and Canavalia (Canavalia ensiformis) Seeds. Scholars Academic Journal of Biosciences, 5, 183-191.

[31]   Raskovic, A., Milanovic, I., Pavlovic, N., Cebovic, T., Vukmirovic, S. and Mikov, M. (2014) Antioxidant Activity of Rosemary (Rosmarinus officinalis L.) Essential Oil and Its Hepatoprotective Potential. BMC Complementary and Alternative Medicine, 14, Article No. 225.
https://doi.org/10/1186/1472-6882-14-225

[32]   Brai, B.I., Adisa, R.A. and Odetola, A.A. (2014) Hepatoprotective Properties of Aqueous Leaf Extract of Persea americana, Mill (Lauraceae) ‘Avocado’ against CCL4-Induced Damage in Rats. African Journal of Traditional, Complementary, and Alternative Medicines, 11, 237-244.
https://doi.org/10.4314/ajtcam.v11i2.2

[33]   Collet, E. (2002) Progrès en Dermatologie. John Libbey Eurotext, Montrouge, 271 p.

[34]   Krings, U., Lehnert, N., Fraatz, M.A., Hardebusch, B., Zorn, H. and Berger, R. (2009) Autoxidation versus Biotransformation of α-Pinene to Flavors with Pleurotus sapidus: Regioselective Hydroperoxidation of α-Pinene and Stereoselective Dehydrogenation of Verbenol. Journal of Agricultural and Food Chemistry, 57, 9944-9950.
https://doi.org/10.1021/jf901442q

[35]   Turek, C. and Stintzing, F.C. (2013) Stability of Essential Oils: A Review. Comprehensive Reviews in Food Science and Food Safety, 12, 40-53.
https://doi.org/10.1111/1541-4337.12006

[36]   Scott, R.P.W. (2005) Essential Oils. In: Worsfold, P., Townshend, A. and Poole, C., Eds., Encyclopedia of Analytical Science (Second Edition), Elsevier, Amsterdam, 554-561.
https://doi.org/10.1016/B0-12-369397-7/00147-3

[37]   Mockute, D., Bernotien, G. and Jud tentiene, A. (2005) Storage-Induced Changes in Essential Oil Composition of Leonurus cardiaca L. Plants Growing Wild in Vilnius and of Commercial Herbs. Chemija, 16, 29-32.

[38]   Schweiggert, U., Carle, R. and Schieber, A. (2007) Conventional and Alternative Processes for Spice Production—A Review. Trends in Food Science & Technology, 18, 260-268.
https://doi.org/10.1016/j.tifs.2007.01.005

[39]   Misra, G., Pavlostathis, S.G., Perdue, E.M. and Araujo, R. (1996) Aerobic Biodegradation of Selected Monoterpenes. Applied Microbiology and Biotechnology, 45, 831-838.
https://doi.org/10.1007/s002530050770

[40]   Rio, C. (2009) Etude des mécanismes d’oxydation des composés terpéniques par le radical OH. Ecole Doctorale des Sciences Chimiques, Universite Bordeaux I, Bordeaux, 143 p.

[41]   Ternes, W. (2008) Naturwissenschaftliche Grundlagen der Lebensmittelzubereitung. 3rd Edition, Behr’s Verlag, Hamburg.

[42]   Tomaino, A., Cimino, F., Zimbalatti, V., Venuti, V., Sulfaro, V., De Pasquale, A. and Saija, A. (2005) Influence of Heating on Antioxidant Activity and the Chemical Composition of Some Spice Essential Oils. Food Chemistry, 89, 549-554.
https://doi.org/10/1016/j.foodchem.2004.03.011

[43]   Choe, E. and Min, D.B. (2006) Mechanisms and Factors for Edible Oil Oxidation. Comprehensive Reviews in Food Science and Food Safety, 5, 169-186.
https://doi.org/10.1111/j.1541-4337.2006.00009.x

[44]   Misharina, T.A., Polshkov, A.N., Ruchkina, E.L. and Medvedeva, I.B. (2003) Changes in the Composition of the Essential Oil of Marjoram during Storage. Applied Biochemistry and Microbiology, 39, 311-316.
https://doi.org/10.1023/A:1023592030874

[45]   Fincke, A. and Maurer, R. (1974) Verhalten von Citronenol bei der Herstellung und Lagerung citronenolhaltiger Zuckerwaren. 2. Mitteilung: Lager-und Herstellungsversuche. Deutsche Lebensmittel-Rundschau, 70, 100-104.

[46]   Backtorp, C., Johnson, W.J.R.T., Panas, I., Skold, M., Borje, A. and Nyman, G. (2006) Theoretical Investigation of Linalool Oxidation. The Journal of Physical Chemistry A, 110, 12204-12212.
https://doi.org/10.1021/jp0603278

[47]   Neuenschwander, U., Guignard, F. and Hermans, I. (2010) Mechanism of the Aerobic Oxidation of α-Pinene. ChemSusChem, 3, 75-84.
https://doi.org/10.1002/cssc.200900228

[48]   El-Hadary, A.E. and Mohamed, F.R.H. (2016) Hepatoprotective Effect of Cold-Pressed Syzygium aromaticum Oil against Carbon Tetrachloride (CCl4)-Induced Hepatotoxicity in Rats. Pharmaceutical Biology, 54, 1364-1372.
https://doi.org/10.3109/13880209.2015.1078381

[49]   Dai, N., Zou, Y., Zhu, L., Wang, H.F. and Dai, M.G. (2014) Antioxidant Properties of Proanthocyanidins Attenuate Carbon Tetrachloride (CCl4)-Induced Steatosis and Liver Injury in Rats via CYP2E1 Regulation. Journal of Medicinal Food, 17, 663-669.
https://doi.org/10.1089/jmf.2013.2834

[50]   Maameri, Z., Djerrou, Z., Halmi, S., Djaalab, H., Riachi, F. and Hamdipacha, Y. (2015) Evaluation of Hepatoprotective Effect of Pistacia lentiscus L. Fatty Oil in Rats Intoxicated by Carbon Tetrachloride. International Journal of Pharmacognosy and Phytochemical Research, 7, 251-254.

[51]   Pan, X., Hussain, F.N., Iqbal, J., Feuerman, M.H. and Hussain, M.M. (2007) Inhibiting Proteasomal Degradation of Microsomal Triglyceride Transfer Protein Prevents CCl4-Induced Steatosis. The Journal of Biological Chemistry, 282, 17078-17089.
https://doi.org/10.1074/jbc.M701742200

[52]   Weber, L.W.D., Boll, M. and Stampf, A. (2003) Hepatotoxicity and Mechanism of Action of Haloalkanes: Carbon Tetrachloride as a Toxicological Model. Critical Reviews in Toxicology, 33, 105-136.
https://doi.org/10.1080/713611034

[53]   Wills, P.J. and Asha, V.V. (2006) Protective Effect of Pygidium flexuosum (L.) Sw. Extract against Carbon Tetrachloride-Induced Acute Liver Injury in Rats. Journal of Ethnopharmacology, 108, 320-326.
https://doi.org/10.1016/j.jep.2006.05.032

[54]   Sotelo-Félix, J.I., Martinez-Fong, D., Muriel, P., Santillán, R.L., Castillo, D. and Yahuaca, P. (2002) Evaluation of the Effectiveness of Rosmarinus officinalis (Lamiaceae) in the Alleviation of Carbon Tetrachloride-Induced Acute Hepatotoxicity in the Rat. Journal of Ethnopharmacology, 81, 145-154.
https://doi.org/10.1016/s0378-8741(02)00090-9

[55]   Wilson, D. and Hrutfiord, B. (1975) The Fate of Turpentine in Aerated Lagoons. Pulp Paper Canada, 76, 195-197.

[56]   Dorman, H.J. and Deans, S.G. (2000) Antimicrobial Agents from Plants: Antibacterial Activity of Plant Volatile Oils. Journal of Applied Microbiology, 88, 308-316.
https://doi.org/10.1046/j.1365-2672.2000.00969.x

[57]   Ouraini, D., Agani, A., Alaoui, M.I., Alaoui, K., Chenah, Y., Alaoui, M.A. and Belabbas, M.A. (2007) Activité antifongique de l’acide oléique et des huiles essentielles de Thymus saturejoides L. et de Mentha pulegium L., comparée aux antifongiques dans les dermatoses mycosiques. Phytothérapie, 5, 6-14.
https://doi.org/10.1007/s10298-007-0201-2

[58]   Hsiao, G., Shen, M.Y., Lin, K.H., Lan, M.H., Wu, L.Y., Chou, D.S., Lin, C.H., Su, C.H. and Sheu, J.R. (2003) Antioxidative and Hepatoprotective Effects of Antrodia camphorata Extract. Journal of Agricultural and Food Chemistry, 51, 3302-3308.
https://doi.org/10.1021/jf021159t

[59]   Cheng, N., Ren, N., Gao, H., Lei, X., Zheng, J. and Cao, W. (2013) Antioxidant and Hepatoprotective Effects of Schisandra chinensis Pollen Extract on CCl4-Induced Acute Liver Damage in Mice. Food and Chemical Toxicology, 55, 234-240.
https://doi.org/10.1016/j.fct.2012.11.022

[60]   Pareek, A., Godavari, A., Issarani, R. and Nagori, B.P. (2013) Antioxidant and Hepatoprotective Activity of Fagonia schweinfurthii (Hadidi) Hadidi Extract in Carbon Tetrachloride Induced Hepatotoxicity in HepG2 Cell Line and Rats. Journal of Ethnopharmacology, 150, 973-981.
https://doi.org/10.1016/j.jep.2013.09.048

[61]   Huang, Q., Zhang, S., Zheng, L., He, M., Huang, R. and Lin, X. (2012) Hepatoprotective Effects of Total Saponins Isolated from Taraphochlamys affinis against Carbon Tetrachloride Induced Liver Injury in Rats. Food and Chemical Toxicology, 50, 713-718.
https://doi.org/10.1016/j.fct.2011.12.009

[62]   Parola, M., Pinzani, M., Casini, A., Albano, E., Poli, G., Gentilini, A., Gentilini, P. and Dianzani, M.U. (1993) Stimulation of Lipid Peroxidation or 4-Hydroxynonenal Treatment Increases Procollagen α1 (I) Gene Expression in Human Liver Fat-Storing Cells. Biochemical and Biophysical Research Communications, 194, 1044-1050.
https://doi.org/10.1006/bbrc.1993.1927

[63]   Sherlock, S. (1970) Effects of Drugs on the Liver. Annals of Clinical Biochemistry: International Journal of Laboratory Medicine, 7, 75-80.
https://doi.org/10.1177/000456327000700402

[64]   De Groot, H. and Sies, H. (1989) Cytochrome P-450, Reductive Metabolism, and Cell Injury. Drug Metabolism Reviews, 20, 275-284.
https://doi.org/10.3109/03602538909103543

[65]   Mostafa, M. (2008) The Metabolism of Terprenoides in Caprins. Life Sciences [q-bio]. AgroParisTech, NNT: AGPT0032, Pastel-00004406, 201 p.
https://pastel.archives-ouvertes.fr/pastel-00004406

[66]   Packer, J.E., Slater, T.F. and Willson, R.L. (1978) Reactions of the Carbon Tetrachlonde-Related Peroxy Free Radical with Amino Acids: Pulse Radiolysis Evidence. Life Sciences, 23, 2617-2620.
https://doi.org/10.1016/0024-3205(78)90378-8

[67]   Moon, H.K., Kang, P., Lee, H.S., Min, S.S. and Seol, G.H. (2014) Effects of 1,8-Cineole on Chronic Exposure to Nicotine in Rats. Journal of Pharmacy and Pharmacology, 66, 688-693.
https://doi.org/10.1111/jphp.12195

[68]   Kumar, S.M., Subramaniyan, K. and Boobalan, R. (2010) Antihypertensive and Antioxidant Potential of Borneol-A Natural Terpene in LNAME-Induced Hypertensive Rats. International Journal of Pharmaceutical & Biological Archives, 1, 271-279.

[69]   Halliwell, B. and Gutteridge, J.M.C. (1999) Free Radicals in Biology and Medicine. 3rd Edition, Oxford University Press, Oxford, 1-25.

[70]   Okado-Matsumoto, A. and Fridovich, I. (2001) Subcellular Distribution of Superoxide Dismutase (SOD) in Rat Liver: Cu,Zn-SOD in Mitochondria. Journal of Biological Chemistry, 276, 38388-38393.
https://doi.org/10/1074/jbc.M105395200

[71]   Sturtz, L.A., Diekert, K., Jensen, L.T., Lill, R. and Culotta, V.C. (2001) A Fraction of Yeast Cu,Zn-Superoxide Dismutase and Its Metallochaperone, CCS, Localize to the Intermembrane Space of Mitochondria. A Physiological Role for SOD1 in Guarding against Mitochondrial Oxidative Damage. Journal of Biological Chemistry, 276, 38084-38089.
https://doi.org/10.1074/jbc.M105296200

 
 
Top