[1] Smith, M.B., Achtzehn, T., et al. (2015) Fast Neutron Measurements Using Cs2LiYCl6:Ce (CLYC) Scintillator. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 784, 162-167. https://doi.org/10.1016/j.nima.2014.09.021
[2] D’Olympia, N., Chowdhury, P., Lister, C.J., Glodo, J., Hawrami, R., Shah, K. and Shirwadkar, U. (2013) Pulse-Shape Analysis of CLYC for Thermal Neutrons, Fast Neutrons, and Gamma-Rays. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 714, 121-127. https://doi.org/10.1016/j.nima.2013.02.043
[3] Woolf, R.S., Wulf, E.A., Phlips, B.F., Chowdhury, P. and Jackson, E.G. (2020) Identification of Internal Radioactive Contaminants in Elpasolites (CLYC, CLLB, CLLBC) and Other Inorganic Scintillators. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 954, Article ID: 161228. https://doi.org/10.1016/j.nima.2018.09.063
[4] Glodo, J., Higgins, W.M., van Loef, E.V.D. and Shah, K.S. (2009) Cs2LiYCl6:Ce Scintillator for Nuclear Monitoring Applications. IEEE Transactions on Nuclear Science, 56, 1257-1261. https://doi.org/10.1109/TNS.2009.2012515
[5] Glodo, J., Higgins, W.M., van Loef, E.V.D. and Shah, K.S. (2008) Scintillation Properties of 1 Inch Cs2LiYCl6: Ce Crystals. IEEE Transactions on Nuclear Science, 55, 1206-1209. https://doi.org/10.1109/TNS.2007.913467
[6] Martinez, T., Pérez de Rada, A., et al. (2013) Characterization of a CLYC Detector for Underground Experiments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 906, 150-158. https://doi.org/10.1016/j.nima.2018.07.087
[7] Glodo, J., et al. (2013) Fast Neutron Detection with Cs2LiYCl6. IEEE Transactions on Nuclear Science, 60, 864-870. https://doi.org/10.1109/TNS.2012.2227499
[8] D’Olympia, N., et al. (2012) Optimizing Cs2LiYCl6 for Fast Neutron Spectroscopy. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 694, 140-146. https://doi.org/10.1016/j.nima.2012.07.021
[9] Huang, K. and Zhong, W.Y. (2018) MC Simulation of BaBrI (Eu) Scintillator Light Yield and Detection Efficiency. Nuclear Electronics and Detection Technology, 38, 865-869.
[10] Xu, Y.S. (1996) The Application of Monte Carlo Method in Experimental Nuclear Physics. China Atomic Energy Press, Beijing, 119-126.
[11] Qin, J.G. and Zheng, P. (2016) Cs2LiYCl6:Ce Scintillator Detector γ Response and Characteristics. National Annual Conference on Nuclear Electronics and Nuclear Detection Technology, Chengdu, 9.
[12] Ren, G.H. and Yang, F. (2017) The Research History and Current Situation of Halide Scintillation Crystals. SCIENTIA SINICA Technologica, 47, 1149-1164. https://doi.org/10.1360/N092017-00108
[13] Peking University, Tsinghua University and Fudan University. (1994) Nuclear Physics Experiment Method. Atomic Energy Press, Beijing.
[14] Zhong, D.S. and Cai, X.J. (2019) Simulation Study on the Influence of Geometric Factors of LaBr3 Crystal on Luminous Efficiency and Detection Efficiency. Nuclear Electronics and Detection Technology, 39, 664-667.
[15] Zhang, J.F. (2009) MCNP Simulation of High Purity Germanium Detector Detection Efficiency. Jilin University, Changchun.