Back
 AE  Vol.10 No.4 , October 2022
Management of the Prickly Pear Mealy Bug, Dactylopius opuntiae Using Bio-Insecticide in Morocco
Abstract: The cochineal, Dactylopius opuntiae, has recently become the main pest that damages the prickly cactus, Opuntia ficus-indica, plants in Morocco. The control methods in which pesticides are used and applied weekly, have generated phytotoxicity, poisoning and high residuality in fresh nopal, which also prevents its commercialization in international markets and the constant risk to human and animal health. Therefore, the use of less aggressive products with a low impact on the environment and is sustainable for the crop, has been introduced without an obvious strategy for gradual control of the insect. This study was conducted to evaluate the effects of Beta vulgaris subsp., Eucalyptus torquata and Cedrus atlantica plant extracts (Eucalyptus leaves, small pieces of beet and Cedrus leaves powdered and macerated in 100 ml of distilled water for 72 h) for controlling of D. opuntiae under laboratory and field conditions. The results show that these extracts constitute a viable alternative for the control of wild cochineal in the nopal. A gradual reduction of cochineal populations was obtained, until after the third application with these extracts, with biological effectiveness of up to 90%. The findings of our study indicate that Beta vulgaris subsp., plant extracts could be used in the development and implementation of a biological control program against D. opuntiae under field conditions.
Cite this paper: El Finti, A. , El Boullani, R. , Zahidi, A. and El Mousadik, A. (2022) Management of the Prickly Pear Mealy Bug, Dactylopius opuntiae Using Bio-Insecticide in Morocco. Advances in Entomology, 10, 267-274. doi: 10.4236/ae.2022.104019.
References

[1]   Mann, J. (1969) Cactus-Feeding Insects and Mites. Bulletin—United States National Museum, No. 256, 1-158.
https://doi.org/10.5479/si.03629236.256.1

[2]   Githure, J., et al. (1999) Host Specificity of Biotypes of Dactylopius opuntiae (Cockerell) (Hemiptera: Oactylopiidae): Prospects for Biological Control of Opuntia stricta (Haworth) Haworth (Cactaceae) in Africa. African Entomology, 7, 43-48.

[3]   Vanegasrico, J.M., Lomeli-flores, J.R., Rodríguez-leyva, E., Mora-aguilera, M., Valdez, G.J., Lomeli-Flores, J.R., Rodríguez-Leyva, E., Mora-Aguilera, G. and Valdez, J.M. (2010) Enemigos naturales de Dactylopius opuntiae (Cockerell) en Opuntia ficus-indica (L.) Miller en el centro de México. Acta Zoologica Mexicana, 26, 415-433.
https://doi.org/10.21829/azm.2010.262718

[4]   Spodek, M., Ben-Dov, Y., Protasov, A. and Phytoparasitica, C.C. (2014) First Record of Dactylopius opuntiae (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. Springer, Berlin.
https://doi.org/10.1007/s12600-013-0373-2

[5]   Bouharroud, R., Amarraque, A. and Qessaoui, R. (2016) First Report of the Opuntia Cochineal Scale Dactylopius opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bulletin, 46, 308-310.
https://doi.org/10.1111/epp.12298

[6]   De Lotto, G. (1974) On the Status and Identity of the Cochineal Insects (Homoptera: Coccoidea: Dactylopiidae). Journal of the Entomological Society of Southern Africa, 37, 167-193.

[7]   Eisner, T., Ziegler, R., McCormick, J. and Experientia, M.E. (1994) Defensive Use of an Acquired Substance (Carminic Acid) by Predaceous Insect Larvae. Experientia, 50, 610-615.
https://doi.org/10.1007/BF01921733

[8]   Miller, D.R. (1976) Dactylopiidae in Syllabus for Workshop on Scale Identification. In Proceedings, National Meeting of the Entomological Society of America. November, Hawaii, 68-86.

[9]   Griffith, M.P. (2004) The Origins of an Important Cactus Crop, Opuntia ficus-indica (Cactaceae): New Molecular Evidence. American Journal of Botany, 91, 1915-1921.
https://doi.org/10.3732/ajb.91.11.1915

[10]   Kiesling, R. (1998) Origen, domesticación y distribución de Opuntia ficus-indica. Journal of the Professional Association for Cactus Development, 3, 50-60.

[11]   Portillo, L. and Vigueras, A.L. (2008) Cría de grana cochinilla, Manual técnico. Universidad de Guadalajara, Guadalajara, 10-18.

[12]   Silva, D., do Mergulhao, A.E., de Medeiros, L., Figueiredo, M. and Burity, H. (2013) Genetic Variability of Dactylopius opuntiae (Hemiptera, Dactylopiidae) on Forage Cactus in Northeast Brazil. Genetics and Molecular Research, 12, 5236-5246.
https://doi.org/10.4238/2013.October.30.8

[13]   Méndez, G.S.J. (1994) Principales plagas del nopal. In: Esparza, G. and Méndez, S.J., Eds., Memorias: Aportaciones Técnicas y Experiencias de la Producción de Tuna en Zacatecas, CECCAM, CP, UACH, UAZ, SARH, Morelos, 49-57.

[14]   Ramírez-Bustos, I.I., López-Martínez, V., Juárez-López, P., Guillén-Sánchez, D., Alia-Tejacal, I., Rivera-León, I., Albeiro Saldarriaga-Norena, H. and Jiménez-García, D. (2018) Identificación de envases vacíos de plaguicidas en plantaciones de nopal verdura, Opuntia ficus-indica (L.) Mill. (Cactaceae), en Morelos, México. Acta Agrícola y Pecuaria, 4, 18-25.
https://doi.org/10.30973/aap/2018.4.1/3

[15]   Vavrina, C.S., Stansly, P.A. and Liu, T.X. (1995) Household Detergent on Tomato: Phytotoxicity and Toxicity to Silverleaf Whitefly. HortScience, 30, 1406-1409.
https://doi.org/10.21273/HORTSCI.30.7.1406

[16]   Liu, T.-X. and Stansly, P.A. (1995) Toxicity and Repellency of Some Biorational Insecticides to Bemisia argentifolii on Tomato Plants. Entomologia Experimentalis et Applicata, 74, 137-143.
https://doi.org/10.1111/j.1570-7458.1995.tb01885.x

[17]   Palacios-Mendoza, C. and Zoológica, N.-H.-A. (2004) Efectividad biológica de productos biodegradables para el control de la cochinilla silvestre Dactylopius opuntiae (Cockerell) (Homoptera: Dactylopiidae). Acta Zoológica Mexicana, 20, 99-106.
https://doi.org/10.21829/azm.2004.2031584

[18]   Wink, M. (1993) Production and Application of Phytochemicals from an Agricultural Perspective. In: Beek, V.T.A. and Breteler, H., Eds., Phytochemistry and Agriculture, Clarendon Press, Oxford, Vol. 34, 171-213.

[19]   Tang, W.C. and Eisenbrand, G. (1992) Chinese Drugs of Plant Origin: Chemistry, Pharmacology and Use in Traditional and Modern Medicine. Springer, Berlin, 849-854.
https://doi.org/10.1007/978-3-642-73739-8_106

[20]   Kim, T.J. (1996) Korean Resources Plants, Vols. I-VI. Seoul National University Press, Seoul.

[21]   Weaver, D.K. (1994) Insecticidal Activity of Floral, Foliar, and Root Extracts of Tagetes minuta (Asterales: Asteraceae) against Adult Mexican Bean Weevil (Coleoptera: Bruchidae). Journal of Economic Entomology, Annapolis, 87, 1718-1725.
https://doi.org/10.1093/jee/87.6.1718

[22]   Aalaoui, M. and Sbaghi, M. (2021) Effects of Sublethal Concentrations of Some Biorational Insecticides in Predation Potential of Cryptolaemus montrouzieri on Dactylopius opuntiae. International Journal of Tropical Insect Science, 42, 519-526.
https://doi.org/10.1007/s42690-021-00567-8

[23]   Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A., Mustapha and Bouhssini, E. (2021) Field and Laboratory Evaluations of Different Botanical Insecticides for the Control of Dactylopius opuntiae (Cockerell) on Cactus Pear in Morocco. International Journal of Tropical Insect Science, 41, 1623-1632.
https://doi.org/10.1007/s42690-020-00363-w

[24]   Yousef-Yousef, M. and Quesada-Moraga, E. (2020) Towards Dactylopius opuntiae (Cockerell) (Hemiptera: Dactylopiidae) Biological and Integrated Management at Field Conditions in Cadiz Province (Spain). Biocontrol Science and Technology, 30, 951-961.
https://doi.org/10.1080/09583157.2020.1771280

[25]   Vigueras, A.L., CibrAan-Tovar, J. and Pelayo-Ortiz, C. (2007) Use of Botanicals Extracts to Control Wild Cochineal (Dactylopius opuntiae Cockerell) on Cactus Pear. Acta Horticulturae, 811, 229-234.
https://doi.org/10.17660/ActaHortic.2009.811.28

[26]   Khera, K.S., Whalen, C. and Angers, G. (1982) Teratogenicity Study on Pyrethrum and Rotenone (Natural Origin) and Ronnel in Pregnant Rats. Journal of Toxicology and Environmental Health, 10, 111-119.
https://doi.org/10.1080/15287398209530235

[27]   Betarbet, R., et al. (2000) Chronic Systemic Pesticide Exposure Reproduces Features of Parkinson’s Disease. Nature Neuroscience, 3, 1301-1306.
https://doi.org/10.1038/81834

 
 
Top