AE  Vol.10 No.3 , July 2022
Comparison of Insecticide Resistance and Its Enzyme Mechanisms among Aedes aegypti Collected with Three Methods in a Dengue-Endemic City in Southern Mexico
Abstract: Background: Despite the physical and chemical effort to control Aedes aegypti, the arboviruses transmission in the south of Mexico remains latent. Trying to improve the methods of entomological surveillance routinely used, whether the estimation of resistance to insecticides used for its control, as well as their enzyme mechanisms, were influenced by the phase in which the mosquitoes were collected through three different collection methods was investigated. Materials and Methods: Mosquito collections from the “5 de Febrero” neighborhood in Tapachula, Mexico were obtained by ovitraps, larvitraps, and a CDC backpack aspirator. Insecticide resistance of F1 females was determined by WHO diagnostic doses and resistance ratios (RR50), furthermore, levels of insecticide metabolism enzymes were determined by biochemical assays. Results: Overall, in mosquitoes collected by ovitraps, larvitraps, and CDC backpack aspirator respectively, the low mortalities obtained with the discriminant dose to Malathion (27.57%, 26.97%, and 26.91%), and to Bendiocarb (50.5%, 45.36%, and 54.97%) suggest resistance. However, LC50 for Malathion (0.922, 0.934, and 0.915) and for Bendiocarb (0.112, 0.109, and 0.107); and the low resistance ratios (RR50) for Malathion (3.34, 3.29, and 3.27) and for Bendiocarb (2.15, 2.1, and 2.06) does not suggest resistance. Although a slight numerical variation is observed between the three LC50 values, the overlap observed between their confidence intervals allows us to assume that there were no differences between the three methods. In general, esterases (determined with three substrates), glutathion S-transferases (GST) and cytochromes P450 were statistically higher than those of the susceptible strain; and the three enzyme levels were statistically different among the three collection methods (P < 0.01), being those collected with CDC backpack aspirator with the highest levels. Conclusion: Although using a CDC backpack aspirator demonstrated being the best collection method determining a specific resistance mechanism (as elevation at the enzyme level) in the mosquito adult phase, any collection method is reliable to determine whether a field mosquito population is resistant or susceptible to an insecticide.
Cite this paper: Quezada-Yaguachi, W. , Rodriguez, A. , Solís-Santoyo, F. , López-Solís, A. , Black IV, W. , Saavedra-Rodriguez, K. , Morales-Viteri, D. and Penilla-Navarro, R. (2022) Comparison of Insecticide Resistance and Its Enzyme Mechanisms among Aedes aegypti Collected with Three Methods in a Dengue-Endemic City in Southern Mexico. Advances in Entomology, 10, 252-266. doi: 10.4236/ae.2022.103018.

[1]   Kraemer, M.U.G., Sinka, M.E., Duda, K.A., Mylne, A.Q.N., Shearer, F.M., Barker, C.M., Moore, C.G., Carvalho, R.G., Coelho, G.E., Van Bortel, W., Hendrickx, G., Schaffner, F., Elyazar, I.R., Teng, H.J., Brady, O.J., Messina, J.P., Pigott, D.M., Scott, T.W., Smith, D.L., Hay, S.I., et al. (2015) The Global Distribution of the Arbovirus Vectors Aedes aegypti and Ae. albopictus. ELife, 4, e08347.

[2]   Dickens, B.L., Sun, H., Jit, M., Cook, A.R. and Carrasco, L.R. (2018) Determining Environmental and Anthropogenic Factors Which Explain the Global Distribution of Aedes aegypti and Ae. albopictus. BMJ Global Health, 3, e000801.

[3]   Severo, O.P. (1955) Eradication of the Aedes aegypti Mosquito from the Americas. Yellow Fever, a Symposium in Commemoration of Carlos Juan Finlay, The Jefferson Medical College of Philadelphia, 22-23 September 1995, Paper 6.

[4]   Slosek, J. (1986) Aedes aegypti Mosquitoes in the Americas: A Review of Their Interactions with the Human Population. Social Science and Medicine, 23, 249-257.

[5]   Dick, O.B., San Martín, J.L., Montoya, R.H., Del Diego, J., Zambrano, B. and Dayan, G.H. (2012) Review: The History of Dengue Outbreaks in the Americas. American Journal of Tropical Medicine and Hygiene, 87, 584-593.

[6]   Brady, O.J., Gething, P.W., Bhatt, S., Messina, J.P., Brownstein, J.S., Hoen, A.G., Moyes, C.L., Farlow, A.W., Scott, T.W. and Hay, S.I. (2012) Refining the Global Spatial Limits of Dengue Virus Transmission by Evidence-Based Consensus. PLoS Neglected Tropical Diseases, 6, e1760.

[7]   World Health Organization/Pan American Health Organization (2021) Actualización Epidemiológica. Arvobirosis en el contexto de COVID-19. World Health Organization, Geneva, 1-12.

[8]   World Health Organization (2016) Dengue Vaccine. WHO Position Paper. Weekly Epidemiological Record, 30, 349-364.

[9]   Aguiar, M., Stollenwerk, N. and Halstead, S.B. (2016) The Impact of the Newly Licensed Dengue Vaccine in Endemic Countries. PLoS Neglected Tropical Diseases, 10, e0005179.

[10]   Stein, M., Inés Oria, G. and Almirón, W.R. (2002) Main Breeding-Containers for Aedes aegypti and Associated Culicids, Argentina. Revista de Saude Publica, 36, 627-630.

[11]   Secretaria de Salud de México (SSA) (2001) Programa de Acción: Enfermedades transmitidas por Vector. Primera edición, Secretaría de Salud de México.

[12]   Centro Nacional de Programas Preventivos y Control de Enfermedades (2020) Guía para la Determinacion de la Susceptibilidad/Resistencia y Eficacia Biológica a insecticidas. Segunda edición, Secretaria de Salud Pública de México.

[13]   Moyes, C.L., Vontas, J., Martins, A.J., Ng, L.C., Koou, S.Y., Dusfour, I., Raghavendra, K., Pinto, J., Corbel, V., David, J.P. and Weetman, D. (2017) Contemporary Status of Insecticide Resistance in the Major Aedes Vectors of Arboviruses Infecting Humans. PLoS Neglected Tropical Diseases, 15, e0009084.

[14]   Bisset, J.A. (2002) Uso correcto de insecticidas: Control de la resistencia. Revista Cubana de Medicina Tropical, 1, 2-9.

[15]   World Health Organization (2018) Test Procedures for Insecticide Resistance Monitoring in Malaria Vector Mosquitoes. Segunda edición, World Health Organization, Geneva.

[16]   Brogdon, W.G. and Chan, A. (2010) Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. Centers for Disease Control and Prevention, Atlanta, 1-28.

[17]   Centro Nacional de Programas Preventivos y Control de Enfermedades (2020) Guía metodológica para la vigilancia entomológica con ovitrampas. Segunda Edition, Secretaria de Salud Pública de México.

[18]   Morales, D., Ponce, P., Cevallos, V., Espinosa, P., Vaca, D. and Quezada, W. (2019) Resistance Status of Aedes aegypti to Deltamethrin, Malathion, and Temephos in Ecuador. Journal of the American Mosquito Control Association, 35, 113-122.

[19]   Ocampo, C.B., Salazar-Terreros, M.J., Mina, N.J., McAllister, J. and Brogdon, W. (2011) Insecticide Resistance Status of Aedes aegypti in 10 Localities in Colombia. Acta Tropica, 118, 37-44.

[20]   World Health Organization (2016) Entomological Surveillance for Aedes spp. in the Context of Zika Virus. World Health Organization, Geneva, 1-10.

[21]   Molina, D. and Figueroa, L.E. (2009) Resistencia metabólica a insecticidas organofosforados en Anopheles aquasalis Curry 1932, municipio Libertador, estado Sucre, Venezuela. Biomedica, 29, 604-615.

[22]   Bisset, J.A., Rodriguez, M.M., Fernández, D. and Palomino, M. (2007) Resistencia a insecticidas y mecanismos de resistencia en Aedes aegypti (Diptera: Culicidae) de 2 provincias del Perú. Revista Cubana de Medicina Tropical, 59, 202-208.

[23]   López-Solís, A.D., Castillo-Vera, A., Cisneros, J., Solís-Santoyo, F., Penilla-Navarro, R.P., Black, W.C., Luis Torres-Estrada, J. and Rodríguez, A.D. (2020) Resistencia a insecticidas en Aedes aegypti y Aedes albopictus (Diptera: Culicidae) de Tapachula, Chiapas, México. Salud Publica de Mexico, 62, 439-446.

[24]   Solis-Santoyo, F., Rodriguez, A.D., Penilla-Navarro, R.P., Sanchez, D., Castillo-Vera, A., Lopez-Solis, A.D., Vazquez-Lopez, E.D., Lozano, S., Black, W.C. and Saavedra-Rodriguez, K. (2021) Insecticide Resistance in Aedes aegypti from Tapachula, Mexico: Spatial Variation and Response to Historical Insecticide Use. PLoS Neglected Tropical Diseases, 15, e0009746.

[25]   Quezada-Yaguachi, W.E., Rodriguez, A.D., Solís-Santoyo, F., Lopez-Solis, A.D., Black IV, W., Saavedra-Rodriguez, K., Morales-Viteri, D. and Penilla-Navarro, P. (2022) Comparative Evaluation of the Regular Ovitrap vs an Innovated Larvitrap for Aedes Entomological Surveillance in Tapachula. Advances in Entomology, 10, 77-84.

[26]   Instituto de Diagnóstico y Referencia Epidemiológicos (2009) Guia de colecta entomologica. Secretaria de Salud Pública de México.

[27]   Centro Nacional de Programas Preventivos y Control de Enfermedades (2020) Guía metodológica para la instalación y mantenimiento del insectario. Secretaria de Salud Pública de México.

[28]   World Health Organization (2006) Guidelines for Testing Mosquito Adulticides for Indoor Residual Spraying and Treatment of Mosquito Nets. World Health Organization, Geneva.

[29]   Cáceres, L., Rovira, J., García, A., Torres, R. and De la Cruz, M. (2012) Determinación del estado de la susceptibilidad a insecticidas organofosforados, carbamato y piretroides en poblaciones de Aedes aegypti Linneaus, 1762 (Díptera: Culicidae) de Panamá. Biomédica, 33, 70-81.

[30]   Penilla, R.P., Rodriguez, A.D., Hemingway, J., Torres, J.L., Arredondo-Jimenez, J.I. and Rodriguez, M.H. (1998) Resistance Management Strategies in Malaria Vector Mosquito Control. Baseline Data for a Large-Scale Field Trial against Anopheles albimanus in Mexico. Medical and Veterinary Entomology, 12, 217-233.

[31]   Dusfour, I., Vontas, J., David, J.P., Weetman, D., Fonseca, D.M., Corbel, V., Raghavendra, K., Coulibaly, M.B., Martins, A.J., Kasai, S. and Chandre, F. (2019) Management of Insecticide Resistance in the Major Aedes Vectors of Arboviruses: Advances and Challenges. PLoS Neglected Tropical Diseases, 13, e0007615.

[32]   Vazquez-Prokopec, G.M., Medina-Barreiro, A., Che-Mendoza, A., Dzul-Manzanilla, F., Correa-Morales, F., Guillermo-May, G., Bibiano-Marín, W., Uc-Puc, V., Geded-Moreno, E., Vadillo-Sánchez, J., Palacio-Vargas, J., Ritchie, S. A., Lenhart, A. and Manrique-Saide, P. (2017) Deltamethrin Resistance in Aedes aegypti Results in Treatment Failure in Merida, Mexico. PLoS Neglected Tropical Diseases, 11, e0005656.

[33]   Deming, R., Manrique-Saide, P., Medina Barreiro, A., Cardena, E.U.K., Che-Mendoza, A., Jones, B., Liebman, K., Vizcaino, L., Vazquez-Prokopec, G. and Lenhart, A. (2016) Spatial Variation of Insecticide Resistance in the Dengue Vector Aedes aegypti Presents Unique Vector Control Challenges. Parasites and Vectors, 9, Article No. 67.

[34]   Polson, K.A., Rawlins, S.C., Brogdon, W.G. and Chadee, D.D. (2010) Organophosphate Resistance in Trinidad and Tobago Strains of Aedes aegypti. Journal of the American Mosquito Control Association, 26, 403-410.

[35]   World Health Organization/Pan American Health Organization (2019) Documento técnico para la implementación de intervenciones basado en escenarios operativos genéricos para el control del Aedes aegypti. World Health Organization, Geneva, 58.

[36]   Valdéz Miró, V., Reyes Arencibia, M., Bandomo Abreu, N., Leyva Silva, M. and Marquetti Fernández, M.C. (2018) Evaluación de las larvitrampas como método de vigilancia de Aedes aegypti (Diptera: Culicidae) y otros culícidos. Revista Cubana de Medicina Tropical, 70, 1-10.

[37]   Silva, V.C., Serra-Freire, N.M., Silva, J.D.S., Scherer, P.O., Rodrigues, I., Cunha, S.P. and Alencar, J. (2009) Estudo comparativo entre larvitrampas e ovitrampas para avaliacao da presenca de Aedes aegypti (Diptera: Culicidae) em Campo Grande, Estado do Rio de Janeiro. Revista Da Sociedade Brasileira de Medicina Tropical, 42, 730-731.

[38]   Flores, A.E., Grajales Salomón, J., Fernandez Salas, I., Ponce Garcia, G., Loaiza Becerra, M.H., Lozano, S., Brogdon, W.G., Black IV, W.C. and Beaty, B. (2006) Mechanisms of Insecticide Resistance in Field Populations of Aedes aegypti (L.) from Mechanisms of Insecticide Resistance in Field Populations. American Mosquito Control Association, 22, 672-677.[672:MOIRIF]2.0.CO;2

[39]   Nunes, R.F.F., De Souza, M.A., Costa de Oliveira, J., Granjeiro, R.F.O., Marinho, M.J.D.M. and Pereira, W.O. (2015) Caracterizacao de perfis enzimáticos de cepas do Aedes aegypti do Estado do Rio Grande do Norte, Brasil. Universidade Do Estado Do Rio Grande Do Norte. R. Atirador Miguel Antonio Da Silva Neto, 285-292.