Back
 AJMB  Vol.12 No.3 , July 2022
A Retrospective Analysis of Wastewater Confirms Dominant Circulation of SARS-CoV-2 Delta Variant in Nairobi, Kenya, between April 2021 and August 2021
Abstract: Wastewater surveillance has been applied in various parts of the world to monitor the introduction and transmissions of SARS-CoV-2 variants in a population. The knowledge of SARS-CoV-2 variants circulating in a population is critical to COVID-19 management and timing of the application of public health countermeasures. Contrary to the routine clinical surveillance of SARS-CoV-2 where cases from asymptomatic patients are often underreported, wastewater surveillance offers an unbiased tool for monitoring the extent of SARS-CoV-2 transmissions in a community. The present study aimed to characterize SARS-CoV-2 variants that circulated in Nairobi County, Kenya, between April 2021 and August 2021 utilizing wastewater samples. Viral RNA was extracted from wastewater samples, followed by SARS-CoV-2 screening by real-time RT-qPCR before targeted sequencing of the Spike gene. Forty samples were analyzed, of which 50% (n = 20) tested positive for SARS-CoV-2 by real-time RT-qPCR. Of these, 45% (n = 9) were successfully amplified by RT-PCR and sequenced. The majority (78%, 7/9) of the viruses belonged to the Delta (B.1.617.2) lineage of SARS-CoV-2, while a minority (22%) belonged to the Alpha (B.1.1.7) and Alpha-Delta lineages. Phylogenetic analysis of the SARS-COV-2 delta lineage strains revealed scattered clustering of the Kenyan viruses among the global strains included in the analysis, suggesting different introductory routes into the country. On the whole, our results confirm previous clinical findings that SARS-CoV-2 variants belonging to the Alpha (B.1.1.7) and Delta (B.1.617.2) lineages circulated in Nairobi County, Kenya during the study period, with the latter predominating. This is the first study to describe the diversity of SARS-CoV-2 variants circulating in Kenya, through wastewater analysis.
Cite this paper: Sichamba, P. , Wamunyokoli, F. , Borus, P. , Nzunza, R. , Silvanos, O. , Symekher, S. , Khamadi, S. , Majanja, J. , Wadegu, M. , Chitechi, E. , Mwangi, B. , Komen, E. , Ombija, S. and Bulimo, W. (2022) A Retrospective Analysis of Wastewater Confirms Dominant Circulation of SARS-CoV-2 Delta Variant in Nairobi, Kenya, between April 2021 and August 2021. American Journal of Molecular Biology, 12, 109-121. doi: 10.4236/ajmb.2022.123010.
References

[1]   Hu, B., Guo, H., Zhou, P. and Shi, Z.L. (2020) Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews Microbiology, 19, 141-154.
https://doi.org/10.1038/s41579-020-00459-7

[2]   Wiersinga, W.J., Rhodes, A., Cheng, A.C., Peacock, S.J. and Prescott, H.C. (2020) Pathophysiology, Transmission, Diagnosis, and Treatment of Coronavirus Disease 2019 (COVID-19): A Review. JAMA—Journal of the American Medical Association, 324, 782-793.
https://doi.org/10.1001/jama.2020.12839

[3]   Mehta, O.P., Bhandari, P., Raut, A., Kacimi, S.E.O. and Huy, N.T. (2021) Coronavirus Disease (COVID-19): Comprehensive Review of Clinical Presentation. Frontiers in Public Health, 8, Article No. 582932.
https://doi.org/10.3389/fpubh.2020.582932

[4]   Di Gennaro, F., Pizzol, D., Marotta, C., Antunes, M., Racalbuto, V., Veronese, N. and Smith, L. (2019) Coronavirus Diseases (COVID-19) Current Status and Future Perspectives: A Narrative Review.

[5]   Adetifa, I.M.O., Uyoga, S., Gitonga, J.N., Mugo, D., Otiende, M., Nyagwange, J., Karanja, H.K., Tuju, J., Wanjiku, P., Aman, R., Mwangangi, M., Amoth, P., Kasera, K., Ng’ang’a, W., Rombo, C., Yegon, C., Kithi, K., Odhiambo, E., Rotich, T., et al. (2021) Temporal Trends of SARS-CoV-2 Se-roprevalence during the First Wave of the COVID-19 Epidemic in Kenya. Nature Communications, 12, Article No. 3966.
https://doi.org/10.1038/s41467-021-24062-3

[6]   Ministry of Health, Kenya (2021) Press Statement on COVID-19.
https://www.health.go.ke/press-releases

[7]   Sims, N. and Kasprzyk-Hordern, B. (2020) Future Perspectives of Wastewater-Based Epidemiology: Monitoring Infectious Disease Spread and Resistance to the Community Level. Environment International, 139, Article ID: 105689.
https://doi.org/10.1016/j.envint.2020.105689

[8]   Huizer, M., ter Laak, T.L., de Voogt, P. and van Wezel, A.P. (2021) Wastewater-Based Epidemiology for Illicit Drugs: A Critical Review on Global Data. Water Research, 207, Article ID: 117789.
https://doi.org/10.1016/j.watres.2021.117789

[9]   Mtetwa, H.N., Amoah, I.D., Kumari, S., Bux, F. and Reddy, P. (2021) Wastewater-Based Surveillance of Antibiotic Resistance Genes Associated with Tuberculosis Treatment Regimen in Kwazulu Natal, South Africa. Antibiotics, 10, 1362.
https://doi.org/10.3390/antibiotics10111362

[10]   Ndiaye, A.K., Diop, P.A.M. and Diop, O.M. (2014) Eirus and Non-Polio Enterovirus Nvironmental Surveillance of Poliovin Urban Sewage in Dakar, Senegal (2007-2013). Pan African Medical Journal, 19, Article No. 243.
https://doi.org/10.11604/pamj.2014.19.243.3538

[11]   Hellmér, M., Paxéus, N., Magnius, L., Enache, L., Arnholm, B., Johansson, A., Bergstrom, T. and Norder, H. (2014) Detection of Pathogenic Viruses in Sewage Provided Early Warnings of Hepatitis A Virus and Norovirus Outbreaks. Applied and Environmental Microbiology, 80, 6771-6781.
https://doi.org/10.1128/AEM.01981-14

[12]   McClary-Gutierrez, J.S., Mattioli, M.C., Marcenac, P., Silverman, A.I., Boehm, A.B., Bibby, K., Balliet, M., de los R.F.L., Gerrity, D., Griffith, J.F., Holden, P.A., Katehis, D., Kester, G., La-Cross, N., Lipp, E.K., Meiman, J., Noble, R.T., Brossard, D. and McLellan, S.L. (2021) SARS-CoV-2 Wastewater Surveillance for Public Health Action: Connecting Perspectives from Wastewater Researchers and Public Health Officials during a Global Pandemic. Emerging Infectious Diseases, 27, 1-8.
https://doi.org/10.20944/preprints202104.0167.v1

[13]   Mousazadeh, M., Ashoori, R., Paital, B., Kabdasli, I., Frontistis, Z., Hashemi, M., Sandoval, M.A., Sherchan, S., Das, K. and Emamjomeh, M.M. (2021) Wastewater Based Epidemiology Perspective as a Faster Protocol for Detecting Coronavirus RNA in Human Populations: A Review with Specific Reference to Sars-Cov-2 Virus. Pathogens, 10, 1008.
https://doi.org/10.3390/pathogens10081008

[14]   Jacobsen, H., Pediatrics, B.M.C., Niemann, J., Jacobsen, H., Vonasek, J.H., Hagstrom, S., Donneborg, M.L. and Sorensen, S. (2021) Prolonged Rectal Shedding of SARS-CoV-2 in a 22-Day-Old-Neonate: A Case Report. BMC Pediatrics, 21, Article No. 506.

[15]   Vaselli, N.M., Setiabudi, W., Subramaniam, K., Adams, E.R., Turtle, L., Iturriza-Gómara, M., Solomon, T., Cunliffe, N.A., French, N., Hungerford, D. and Group, C.-L.S. (2021) Investigation of SARS-CoV-2 Faecal Shedding in the Community: A Prospective Household Cohort Study (COVID-LIV) in the UK. BMC Infectious Diseases, 21, Article No. 784.
https://doi.org/10.2139/ssrn.3820521

[16]   Lewis, N. and Pray, W. (2021) COVID-19 Response Team and Epidemic Intelligence Service.

[17]   Yan, D., Zhang, X., Chen, C., Jiang, D., Liu, X., Zhou, Y., Huang, C., Zhou, Y., Guan, Z., Ding, C., Chen, L., Lan, L., Fu, X., Wu, J., Li, L. and Yang, S. (2021) Characteristics of Viral Shedding Time in SARS-CoV-2 Infections: A Systematic Review and Meta-Analysis. Frontiers in Public Health, 9, Article ID: 652842.
https://doi.org/10.3389/fpubh.2021.652842

[18]   Cevik, M., Tate, M., Lloyd, O., Maraolo, A.E., Schafers, J. and Ho, A. (2021) SARS-CoV-2, SARS-CoV, and MERS-CoV Viral Load Dynamics, Duration of Viral Shedding, and Infectiousness: A Systematic Review and Meta-Analysis. The Lancet Microbe, 2, e13-e22.
https://doi.org/10.1016/S2666-5247(20)30172-5

[19]   Owusu, D., Pomeroy, M.A., Lewis, N.M., Wadhwa, A., Yousaf, A.R., Whitaker, B., Dietrich, E., Hall, A.J., Chu, V., Thornburg, N., Christensen, K., Kiphibane, T., Willardson, S., Westergaard, R., Dasu, T., Pray, I.W., Bhattacharyya, S., Dunn, A., Tate, J.E., Buono, S., et al. (2021) Persistent SARS-CoV-2 RNA Shedding without Evidence of Infectiousness: A Cohort Study of Individuals with COVID-19. Journal of Infectious Diseases, 224, 1362-1371.
https://doi.org/10.1093/infdis/jiab107

[20]   Hamouda, M., Mustafa, F., Maraqa, M., Rizvi, T. and Aly, A. (2021) Science of the Total Environment Wastewater Surveillance for SARS-CoV-2: Lessons Learnt from Recent Studies to Define Future Applications. Science of the Total Environment, 759, Article ID: 143493.
https://doi.org/10.1016/j.scitotenv.2020.143493

[21]   Hart, O.E. and Halden, R.U. (2020) Science of the Total Environment Computational Analysis of SARS-CoV-2/COVID-19 Surveillance by Wastewater-Based Epidemiology Locally and Globally: Feasibility, Economy, Opportunities and Challenges. Science of the Total Environment, 730, Article ID: 138875.
https://doi.org/10.1016/j.scitotenv.2020.138875

[22]   Giacobbo, A., Rodrigues, M.A.S., Zoppas Ferreira, J., Bernardes, A.M. and de Pinho, M.N. (2021) A Critical Review on SARS-CoV-2 Infectivity in Water and Wastewater. What Do We Know? Science of the Total Environment, 774, Article ID: 145721.
https://doi.org/10.1016/j.scitotenv.2021.145721

[23]   Agrawal, S., Orschler, L. and Lackner, S. (2021) Long-Term Monitoring of SARS-CoV-2 RNA in Wastewater of the Frankfurt Metropolitan Area in Southern Germany. Scientific Reports, 11, Article No. 5372.
https://doi.org/10.1038/s41598-021-84914-2

[24]   Peccia, J., Zulli, A., Brackney, D.E., Grubaugh, N.D., Kaplan, E.H., Casanovas-Massana, A., Ko, A.I., Malik, A.A., Wang, D., Wang, M., Weinberger, D.M. and Omer, S.B. (2020) SARS-CoV-2 RNA Concentrations in Primary Municipal Sewage Sludge as a Leading Indicator of COVID-19 Outbreak Dynamics.
https://doi.org/10.1101/2020.05.19.20105999

[25]   Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C.P., Hamilton, K.A., Haramoto, E. and Rose, J. B. (2020). SARS-CoV-2 in Wastewater: State of the Knowledge and Research Needs. Science of the Total Environment, 739, Article ID: 139076.
https://doi.org/10.1016/j.scitotenv.2020.139076

[26]   Wurtzer, S., Marechal, V., Mouchel, J.M., Maday, Y., Teyssou, R., Richard, E., Almayrac, J.L. and Moulin, L. (2020) Evaluation of Lockdown Effect on SARS-CoV-2 Dynamics through Viral Genome Quantification in Waste Water, Greater Paris, France, 5 March to 23 April 2020. Eurosurveillance, 25, Article ID: 2000776.
https://doi.org/10.2807/1560-7917.ES.2020.25.50.2000776

[27]   Aguiar-Oliveira, M.L., Campos, A., Matos, A.R., Rigotto, C., Sotero-Martins, A., Teixeira, P.F.P. and Siqueira, M.M. (2020) Wastewater-Based Epidemiology (Wbe) and Viral Detection in Polluted Surface Water: A Valuable Tool for Covid-19 Surveillance—A Brief Review. International Journal of Environmental Research and Public Health, 17, 9251.
https://doi.org/10.3390/ijerph17249251

[28]   Walls, A.C., Park, Y.J., Tortorici, M.A., Wall, A., McGuire, A.T. and Veesler, D. (2020) Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell, 181, 281-292.e6.
https://doi.org/10.1016/j.cell.2020.02.058

[29]   O’Toole, á., Pybus, O.G., Abram, M.E., Kelly, E.J. and Rambaut, A. (2022) Pango Lineage Designation and Assignment Using SARS-CoV-2 Spike Gene Nucleotide Sequences. BMC Genomics, 23, Article No. 121.
https://doi.org/10.1186/s12864-022-08358-2

[30]   Magazine, N., Zhang, T., Wu, Y., McGee, M.C., Veggiani, G. and Huang, W. (2022) Mutations and Evolution of the SARS-CoV-2 Spike Protein. Viruses, 14, 640.
https://doi.org/10.3390/v14030640

[31]   QGIS Development Team (2020) QGIS Geographic Information System (Version 3.10) Software.
https://qgis.org/en/site

[32]   World Health Organization (WHO) (2003) Guidelines for Environmental Surveillance of Poliovirus Circulation Guidelines for Environmental. Vaccine and Biologicals, 3, 28.
https://apps.who.int/iris/bitstream/handle/10665/67854/WHO_V-B_03.03_eng.pdf?sequence=1

[33]   Freed, N.E., Vlková, M., Faisal, M.B. and Silander, O.K. (2021) Rapid and Inexpensive Whole-Genome Sequencing of SARS-CoV-2 Using 1200 bp Tiled Amplicons and Oxford Nanopore Rapid Barcoding. Biology Methods and Protocols, 5, bpaa014.
https://doi.org/10.1093/biomethods/bpaa014

[34]   Geospiza, L. (2008) FinchTV 1.4.0.
https://digitalworldbiology.com/FinchTV

[35]   BioSoft H (2014) DNA Sequence Assembler.
http://www.dnabaser.com/download/DNA-Baser-sequence-assembler/

[36]   Rambaut, A., Holmes, E.C., O’Toole, á., Hill, V., McCrone, J.T., Ruis, C., du Plessis, L. and Pybus, O.G. (2020) A Dynamic Nomenclature Proposal for SARS-CoV-2 Lineages to Assist Genomic Epidemiology. Nature Microbiology, 5, 1403-1407.
https://doi.org/10.1038/s41564-020-0770-5

[37]   Hadfield, J., Megill, C., Bell, S.M., Huddleston, J., Potter, B., Callender, C., Sagulenko, P., Bedford, T. and Neher, R.A. (2018) NextStrain: Real-Time Tracking of Pathogen Evolution. Bioinformatics, 34, 4121-4123.
https://doi.org/10.1093/bioinformatics/bty407

[38]   Shu, Y. and McCauley, J. (2017) GISAID: Global Initiative on Sharing All Influenza Data—From Vision to Reality. Eurosurveillance, 22, 30494.
https://doi.org/10.2807/1560-7917.ES.2017.22.13.30494

[39]   Edgar, R.C. (2004) MUSCLE: Multiple Sequence Alignment with High Accuracy and High Throughput. Nucleic Acids Research, 32, 1792-1797.
https://doi.org/10.1093/nar/gkh340

[40]   Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M.A. and Huelsenbeck, J.P. (2012) Mrbayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice across a Large Model Space. Systematic Biology, 61, 539-542.
https://doi.org/10.1093/sysbio/sys029

[41]   Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253-1256.
https://doi.org/10.1093/molbev/msn083

[42]   Rambaut, A. (2010) FigTree v1.3.1. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh.
http://tree.bio.ed.ac.uk/software/figtree

[43]   Gregory, D.A., Wieberg, C.G., Wenzel, J., Lin, C.H. and Johnson, M.C. (2021) Monitoring Sars-Cov-2 Populations in Wastewater by Amplicon Sequencing and Using the Novel Program Sam Refiner. Viruses, 13, Article No. 1647.
https://doi.org/10.3390/v13081647

[44]   Pandemic, C., Martin, J., Klapsa, D., Wilton, T., Zambon, M., Bentley, E., Bujaki, E., Fritzsche, M., Mate, R. and Majumdar, M. (2020) Tracking SARS-CoV-2 in Sewage.

[45]   Dzinamarira, T., Murewanhema, G., Iradukunda, P.G., Madziva, R., Herrera, H., Cuadros, D.F., Tungwarara, N., Chitungo, I. and Musuka, G. (2022) Utilization of SARS-CoV-2 Wastewater Surveillance in Africa—A Rapid Review. International Journal of Environmental Research and Public Health, 19, Article No. 969.
https://doi.org/10.3390/ijerph19020969

[46]   Sinclair, R.G., Choi, C.Y., Riley, M.R. and Gerba, C.P. (2008) Pathogen Surveillance through Monitoring of Sewer Systems. Advances in Applied Microbiology, 65, 249-269.
https://doi.org/10.1016/S0065-2164(08)00609-6

[47]   Thongpradit, S., Prasongtanakij, S., Srisala, S., Kumsang, Y., Chanprasertyothin, S., Boonkongchuen, P., Pitidhammabhorn, D., Manomaipiboon, P., Somchaiyanon, P., Chandanachulaka, S., Hirunrueng, T. and Ongphiphadhanakul, B. (2022) A Simple Method to Detect SARS-CoV-2 in Wastewater at Low Virus Concentration. Journal of Environmental and Public Health, 2022, Article ID: 4867626.
https://doi.org/10.1155/2022/4867626

[48]   Kilifi, K.W.T.R.P. (2021) Explaining the Three Waves of the COVID-19 Transmission in Kenya Using a Mathematical Model/Policy Brief Key Message.

[49]   Brand, S.P.C., Ojal, J., Aziza, R., Were, V., Emelda, A., Kombe, I.K., Mburu, C., Ogero, M., Agweyu, A., Warimwe, M., Nyagwange, J., Karanja, H., Gitonga, J.N., Mugo, D., Uyoga, S., Adetifa, I.M.O., Scott, J.A.G., Otieno, E., Otiende, M., Nokes, D.J., et al. (2022) COVID-19 Transmission Dynamics Underlying Epidemic Waves in Kenya. Science, 374, 989-994.
https://doi.org/10.1126/science.abk0414

[50]   Herlihy, R., Bamberg, W., Burakoff, A., Alden, N., Severson, R., Bush, E., Kawasaki, B., Berger, B., Austin, E., Shea, M., Gabrieloff, E., Matzinger, S., Burdorf, A., Nichols, J., Goode, K., Cilwick, A., Stacy, C., Staples, E. and Stringer, G. (2021) Rapid Increase in Circulation of the SARS-CoV-2 B.1.617.2 (Delta) Variant—Mesa County, Colorado, April-June 2021. MMWR Recommendations and Reports, 70, 1084-1087.
https://doi.org/10.15585/mmwr.mm7032e2

[51]   Chen, Z., Azman, A.S., Chen, X., Zou, J., Tian, Y., Sun, R., Xu, X., Wu, Y., Lu, W., Ge, S., Zhao, Z., Yang, J., Leung, D.T., Domman, D.B. and Yu, H. (2022) Global Landscape of SARS-CoV-2 Genomic Surveillance and Data Sharing. Nature Genetics, 54, 499-507.
https://doi.org/10.1038/s41588-022-01033-y

[52]   Ferreira, M.B., de-Paris, F., Paiva, R.M. and Nunes, L.S. (2018) Assessment of Conventional PCR and Real-Time PCR Compared to the Gold Standard Method for Screening Streptococcus agalactiae in Pregnant Women. Brazilian Journal of Infectious Diseases, 22, 449-454.
https://doi.org/10.1016/j.bjid.2018.09.005

[53]   Zemtsova, G.E., Montgomery, M. and Levin, M.L. (2015) Relative Sensitivity of Conventional and Real-Time PCR Assays for Detection of SFG Rickettsia in Blood and Tissue Samples from Laboratory Animals. PLOS ONE, 10, e0116658.
https://doi.org/10.1371/journal.pone.0116658

[54]   Pino, N.J., Rodriguez, D.C., Cano, L.C. and Rodriguez, A. (2021) Detection of SARS-CoV-2 in Wastewater Is Influenced by Sampling Time, Concentration Method, and Target Analyzed. Journal of Water and Health, 19, 775-784.
https://doi.org/10.2166/wh.2021.133

 
 
Top