[1] Beltrán, A., Lyons, R., Moretó, A., Navarro, G., Sáez, A. and Tiep, P.H. (2018) Order of Products of Elements in Finite Groups. Journal of the London Mathematical Society, 99, 535-552.
https://doi.org/10.1112/jlms.12185
[2] Gow, R. (2000) Commutators in Finite Simple Groups of Lie Type. Bulletin of the London Mathematical Society, 32, 311-315.
https://doi.org/10.1112/S0024609300007141
[3] Gorenstein, D. and Lyons, R. (1983) The Local Structure of Finite Groups of Characteristic 2 Type. Memoirs of the American Mathematical Society, Vol. 42, American Mathematical Society, Providence.
https://doi.org/10.1090/memo/0276
[4] Gorenstein, D., Lyons, R. and Solomon, R. (1998) The Classification of the Finite Simple Groups, Number 3, Part 3. Mathematical Surveys and Monographs, Vol. 40, American Mathematical Society, Providence.
https://doi.org/10.1090/surv/040.3
[5] Robinson, D.J.S. (1982) A Course in the Theory of Groups. Springer-Verlag, New York.
[6] Abdul Mannan, Md., Akter, H. and Mondal, S. (2021) Evaluate All Possible Subgroups of a Group of Order 30 and 42 by Using Sylow’s Theorem. International Journal of Scientific & Engineering Research, 12, 139-153
[7] Hall Jr., M. (1961) On the Number of Sylow Subgroups in a Finite Group. Journal of Algebra, 7, 363-371.
https://doi.org/10.1016/0021-8693(67)90076-2
[8] Brauer, R. (1942) On Groups Whose Order Contains a Prime Number to the First Power I. American Journal of Mathematics, 64, 401-420.
https://doi.org/10.2307/2371693
[9] Mckay, J. and Wales, D. (1971) The Multipliers of the Simple Groups of Order 604,800 and 50,232,960. Journal of Algebra, 17, 262-273.
https://doi.org/10.1016/0021-8693(71)90033-0
[10] Trefethen, S. (2019) Non-Abelian Composition Factors Finite Groups with the CUT-Property. Journal of Algebra, 522, 236-242.
https://doi.org/10.1016/j.jalgebra.2018.12.002
[11] Moretó, A. (2021) Multiplicities of Fields of Values of Irreducible Characters of Finite Groups. Proceedings of the American Mathematical Society, 149, 4109-4116.
https://doi.org/10.1090/proc/15566
[12] Bächle, A. (2019) 3 Questions on Cut Groups. Advances in Group Theory and Applications, 8, 157-160.
[13] Kurdachenko, L.A., Pypka, A.A. and Subbotin, I.Ya. (2019) On the Structure of Groups Whose Non-Normal Subgroups Are Core-Free. Mediterranean Journal of Mathematics, 16, Article No. 136.
https://doi.org/10.1007/s00009-019-1427-6
[14] Kurdachenko, L.A., Pypka, A.A. and Subbotin, I.Ya. (2020) On Groups Whose Non-Normal Subgroups Are Either Contranormal or Core-Free. Advances in Group Theory and Applications, 10, 83-125.
[15] Conway, J., Curtis, R., Norton, S., Parker, R. and Wilson, R. (1985) Atlas of Finite Groups. Oxford University, Eynsham.
[16] Kurdachenko, L.A., Longobardi, P. and Maj, M. (2020) Groups with Finitely Many Isomorphism Classes of Non-Normal Subgroups. Advances in Group Theory and Applications, 10, 9-41.
[17] McCann, B. (2020) On Products of Cyclic and Non-Abelian Finite p-Groups. Advances in Group Theory and Applications, 9, 5-37.
[18] Lucchini, A. and Moscatiello, M. (2020) A Probabilistic Version of a Theorem of Laszlo Kovacs and Hyo-Seob Sim. International Journal of Group Theory, 9, 1-6.
[19] Lucchini, A. and Moscatiello, M. (2020) Generation of Finite Groups and Maximal Subgroup Growth. Advances in Group Theory and Applications, 9, 39-49.
[20] Cook, W.J., Hall, J., Klima, V.W. and Murray, C. (2019) Leibniz Algebras with Low-Dimensional maximal Lie Quotients. Involve, 12, 839-853.
https://doi.org/10.2140/involve.2019.12.839
[21] Kurdachenko, L.A., Otal, J. and Subbotin, I.Ya. (2019) On Some Properties of the Upper Central Series in Leibniz Algebras. Commentationes Mathematicae Universitatis Carolinae, 60, 161-175.
https://doi.org/10.14712/1213-7243.2019.009
[22] Kurdachenko, L.A., Semko, N.N. and Subbotin, I.Ya. (2020) Applying Group Theory Philosophy to Leibniz Algebras: Some New Developments. Advances in Group Theory and Applications, 9, 71-121.
[23] Bächle, A. and Margolis, L. (2019) On the Prime Graph Question for Integral Group Rings of 4-Primary Groups II. Algebras and Representation Theory, 22, 437-457.
https://doi.org/10.1007/s10468-018-9776-6
[24] Bächle, A. and Margolis, L. (2019) An Application of Blocks to Torsion Units in Group Rings. Proceedings of the American Mathematical Society, 147, 4221-4231.
[25] Margolis, L. and del Río, á. (2019) Finite Subgroups of Group Rings: A Survey. Advances in Group Theory and Applications, 8, 1-37.
[26] Russo, A. (2019) Some Theorems of Fitting Type. Advances in Group Theory and Applications, 8, 39-47.
[27] de Giovanni, F. and Subbotin, I.Ya. (2019) Some Topics of Classical Group Theory: The Genesis and Current Stage. Advances in Group Theory and Applications, 8, 119-153.
[28] D’Angeli, D., Francoeur, D., Rodaro, E. and Wächter, J.P. (2020) Infinite Automaton Semigroups and Groups Have Infinite Orbits. Journal of Algebra, 553, 119-137.
https://doi.org/10.1016/j.jalgebra.2020.02.014
[29] Gillibert, P. (2018) An Automaton Group with Undecidable Order and Engel Problems. Journal of Algebra, 497, 363-392.
https://doi.org/10.1016/j.jalgebra.2017.11.049
[30] Cavaleri, M., D’Angeli, D., Rodaro, A.D.E. (2021) Graph Automaton Groups. Advances in Group Theory and Applications, 11, 75-112.
[31] Casolo, C., Dardano, U. and Rinauro, S. (2018) Groups in Which Each Subgroup Is Commen Surable with a Normal Subgroup. Journal of Algebra, 496, 48-60.
https://doi.org/10.1016/j.jalgebra.2017.11.016
[32] Dardano, U. and Rinauro, S. (2019) Groups with Many Subgroups which Are Commensurable with some Normal Subgroup. Advances in Group Theory and Applications, 7, 3-13.
[33] Margolis, L. and Schnabel, O. (2019) The Herzog-Schönheim Conjecture for Small Groups and Harmonic Subgroups. Beiträge zur Algebra und Geometrie, 60, 399-418.
https://doi.org/10.1007/s13366-018-0419-1
[34] Chouraqui, F. (2019) The Herzog-Schönheim Conjecture for Finitely Generated Groups. International Journal of Algebra and Computation, 29, 1083-1112.
https://doi.org/10.1142/S0218196719500425
[35] Chouraqui, F. (2018) The Space of Coset Partitions of Fn and Herzog-Schönheim Conjecture. arXiv: 1804.11103.
[36] Chouraqui, F. (2020) An Approach to the Herzog-Schönheim Conjecture Using Automata. Developments in Language Theory: 24th International Conference, Tampa, 11-15 May 2020, 55-68.
https://doi.org/10.1007/978-3-030-48516-0_5
[37] Chouraqui, F. (2021) Herzog-Schönheim Conjecture, Vanishing Sums of Roots of Unity and Convex Polygons. Communications in Algebra, 49, 4600-4615.
https://doi.org/10.1080/00927872.2021.1924766