An Evolutionary Algorithm Based on a New Decomposition Scheme for Nonlinear Bilevel Programming Problems

References

[1] B. Colson, P. Marcotte, and G. Savard, “Bilevel programming: A survey,” A Quarterly Journal of Operations Research (4OR), Vol. 3, pp. 87–107, 2005.

[2]
J. F. Bard, “Practical bilevel optimization,” The Netherlands: Kluwer Academic Publishers, 1998.

[3]
U. P. Wen and S. T. Hsu, “Linear bi-level programming problems-A review,” The Journal of the Operational Research Society, Vol. 42, pp. 125–133, 1991.

[4]
K.-M. Lan, U.-P. Wen, H.-S. Shih, et al., “A hybrid neural network approach to bilevel programming problems,” Applied Mathematics Letters, Vol. 20, pp. 880–884, 2007.

[5]
H. I. Calvete, C. Gale, and P. M. Mateo, “A new approach for solving linear bilevel problems using genetic algorithms,” European Journal of Operational Research, Vol. 188, pp. 14–28, 2008.

[6]
L. D. Muu and N. V. Quy, “A global optimization method for solving convex quadratic bilevel programming problems,” Journal of Global Optimization, Vol. 26, pp. 199–219, 2003.

[7]
D. L. Zhu, Q. Xua, and Z. H. Lin, “A homotopy methodfor solving bilevel programming problem,” Nonlinear Analysis, Vol. 57, pp. 917–928, 2004.

[8]
H. Tuy, A. Migdalas, and N. T. Hoai-Phuong, “A novel approach to bilevel nonlinear programming,” Journal of Global Optimization, Vol. 38, pp. 527–554, 2007.

[9]
H. I. Calvete and C. Gale, “On the quasiconcave bilevel programming problem,” Journal of Optimization Theory and Applications, Vol. 98, pp. 613–622, 1998.

[10]
Y. P. Wang, Y. C. Jiao, and H. Li, “An evolutionary algorithm for solving nonlinear bilevel programming based on a new constraint - handling scheme,” IEEE Trans. on Systems, Man, and Cybernetics-Part C, Vol. 35, pp. 221– 232, 2005.

[11]
H. C. Li and Y. P. Wang, “A hybrid genetic algorithm for solving a class of nonlinear bilevel programming problems,” Proceedings of Simulated Evolution and Learning- 6th International Conference, SEAL, pp. 408–415, 2006.

[12]
K. Shimizu and E. Aiyoshi, “A new computational method for Stackelberg and minmax problems by use of a penalty method,” IEEE Transactions on Automatic Control, Vol. 26, pp. 460–466, 1998.

[13]
E. Aiyoshi and K. Shimizu, “A solution method for the static constrained Stackelberg problem via penalty method,” IEEE Transactions on Automatic Control, Vol. AC-29 (12), pp. 1111–1114, 1984.

[14]
B. Colson, P. Marcotte, and G. Savard, “A trust-region method for nonlinear bilevel programming: algorithm & computational experience,” Computational Optimization and Applications, Vol. 30, pp. 211–227, 2005.

[15]
V. Oduguwa and R. Roy, “Bilevel optimization using genetic algorithm,” Proceedings of IEEE International Conference on Artificial Intelligence Systems, pp. 123– 128, 2002.

[16]
B. D. Liu, “Stackelberg-Nash equilibrium for mutilevel programming with multiple followers using genetic algorithms,” Computer mathematics Application, Vol. 36, No. 7, pp. 79–89, 1998.

[17]
X. B. Zhu, Q. Yu, and X. J. Wang, “A hybrid differential evolution algorithm for solving nonlinear bilevel programming with linear constraints,” Proceedings of 5th IEEE International Conference on Cognitive Informatics (ICCI’06), pp. 126–131, 2006.

[18]
J. Rajesh, K. Gupta, and H. Shankar, et al., “A tabu search based approach for solving a class of bilevel programming problems in chemical engineering,” Journal of Heuristics, Vol. 9, pp. 307–319, 2003.

[19]
B. V. Sheela and P. Ramamoorthy, “SWIFT-S new constraines optimization technique,” Computer Methods in Applied Mechanics and Engineering, Vol. 6, pp. 309–318, 1975.