Back
 YM  Vol.6 No.2 , June 2022
Microarray Analysis of MicroRNA Expression Profiles in Newborn and Adult Rats Hippocampus
Abstract: MicroRNAs (miRNAs) are a functional small non-coding RNA and play essential roles in gene regulation indevelopment, differentiation and proliferation. In order to investigate the miRNAs function in Lewis rat hippocampal development, in this study, newborn and adult hippocampi were deliberately selected to analyze the miRNA expression profiles by microarray. Microarray analyses identified 22 differentially expressed miRNAs (>1.5 fold, intersection of two sets). Of these, 12 were down-regulated and 10 were up-regulated during hippocampus development. DAVID Functional Annotation Cluster (FAC) analysis of the 317 predicted target genes of down-regulated miRNAs revealed confident enrichment scores for cell adhesion and neuron development etc., indicating the functional significance and importance of these miRNAs during hippocampal development. Bioinformatic analyses of the differentially expressed miRNAs have identified a number of miRNAs with putative involvement in the hippocampus developing process. This study lays a solid foundation for further studies to clarify the important regulation function of miRNAs in brain tissue.
Cite this paper: Yang, J. , Yu, Y. , Zhang, Z. , Su, B. , Zheng, Y. and Liu, Y. (2022) Microarray Analysis of MicroRNA Expression Profiles in Newborn and Adult Rats Hippocampus. Yangtze Medicine, 6, 24-40. doi: 10.4236/ym.2022.62003.
References

[1]   Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004) MicroRNA Genes Are Transcribed by RNA Polymerase II. The EMBO Journal, 23, 4051-4060.
https://doi.org/10.1038/sj.emboj.7600385

[2]   Guo, H., N Ingolia. T., Weissman, J.S. and Bartel, D.P. (2010) Mammalian micrornas Predominantly Act to Decrease Target mRNA Levels. Nature, 466, 835-840.
https://doi.org/10.1038/nature09267

[3]   Akhtar, M.M., Micolucci, L., Islam, M.S., Olivieri, F. and Procopio, A.D. (2019) A Practical Guide to MiRNA Target Prediction. In: Laganà, A., Ed., MicroRNA Target Identification, Vol. 1970, Humana Press, New York, 1-13.
https://doi.org/10.1007/978-1-4939-9207-2_1

[4]   Friedman, R.C., Farh, K.K., Burge, C.B. and Bartel, D.P. (2009) Most Mammalian mRNAs Are Conserved Targets of MicroRNAs. Genome Research, 19, 92-105.
https://doi.org/10.1101/gr.082701.108

[5]   Ma, N., Tie, C., Yu, B., Zhang, W. and Wan, J. (2020) Identifying lncRNA-MiRNA-mRNA Networks to Investigate Alzheimer’s Disease Pathogenesis and Therapy Strategy. Aging, 12, 2897-2920.
https://doi.org/10.18632/aging.102785

[6]   Chandrasekar, V. and Dreyer, J.L. (2011) Regulation of MiR-124, Let-7d, and MiR-181a in the Accumbens Affects the Expression, Extinction, and Reinstatement of Cocaine-Induced Conditioned Place Preference. Neuropsychopharmacology, 36, 1149-1164.
https://doi.org/10.1038/npp.2010.250

[7]   Prieto-Colomina, A., Fernandez, V., Chinnappa, K. and Borrell, V. (2021) MiRNAs in Early Brain Development and Pediatric Cancer at the Intersection between Healthy and Diseased Embryonic Development. Bioessays, 43, Article ID: 2100073.
https://doi.org/10.1002/bies.202100073

[8]   Garzon, R., Pichiorri, F., Palumbo, T., Visentini, M., Aqeilan, R., Cimmino, A., Wang, H., Sun, H., Volinia, S., Alder, H., Calin, G.A., Liu, C.G., Andreeff, M. and Croce, C.M. (2007) MicroRNA Gene Expression during Retinoic Acid-Induced Differentiation of Human Acute Promyelocytic Leukemia. Oncogene, 26, 4148-4157.
https://doi.org/10.1038/sj.onc.1210186

[9]   Sun, P., Liu, D.Z., Jickling, G.C., Sharp, F.R. and Yin, K.J. (2018) MicroRNA-Based Therapeutics in Central Nervous System Injuries. Journal of Cerebral Blood Flow & Metabolism, 38, 1125-1148.
https://doi.org/10.1177/0271678X18773871

[10]   Hohjoh, H. and Fukushima, T. (2007) Expression Profile Analysis of MicroRNA (MiRNA) in Mouse Central Nervous System Using a New MiRNA Detection System That Examines Hybridization Signals at Every Step of Washing. Gene, 391, 39-44.
https://doi.org/10.1016/j.gene.2006.11.018

[11]   Bak, M., Silahtaroglu, A., Moller, M., Christensen, M., Rath, M.F., Skryabin, B., Tommerup, N. and Kauppinen, S. (2008) MicroRNA Expression in the Adult Mouse Central Nervous System. RNA, 14, 432-444.
https://doi.org/10.1261/rna.783108

[12]   Krol, J., Loedige, I. and Filipowicz, W. (2010) The Widespread Regulation of microrna Biogenesis, Function and Decay. Nature Reviews Genetics, 11, 597-610.
https://doi.org/10.1038/nrg2843

[13]   Sun, L.Y., Evans, M.S., Hsieh, J., Panici, J. and Bartke, A. (2005) Increased Neurogenesis in Dentate Gyrus of Long-Lived Ames Dwarf Mice. Endocrinology, 146, 1138-1144.
https://doi.org/10.1210/en.2004-1115

[14]   Eisen, M.B., Spellman, P.T., Brown, P.O. and Botstein, D. (1998) Cluster Analysis and Display of Genome-Wide Expression Patterns. Proceedings of the National Academy of Sciences of the United States of America, 95, 14863-14868.
https://doi.org/10.1073/pnas.95.25.14863

[15]   Raychaudhuri, S., Stuart, J.M. and Altman, R.B. (2000) Principal Components Analysis to Summarize Microarray Experiments: Application to Sporulation Time Series. Pacific Symposium on Biocomputing, Hawaii, 4-9 January 2000, 455-466.

[16]   Huang, D.W., Sherman, B.T. and Lempicki, R.A., (2009) Systematic and Integrative Analysis of Large Gene Lists Using DAVID Bioinformatics Resources. Nature Protocols, 4, 44-57.
https://doi.org/10.1038/nprot.2008.211

[17]   Sendrowski, K. and Sobaniec, W., (2013) Hippocampus, Hippocampal Sclerosis and Epilepsy. Pharmacological Reports, 65, 555-565.
https://doi.org/10.1016/S1734-1140(13)71033-8

[18]   Tanti, A. and Belzung, C. (2013) Neurogenesis along the Septo-Temporal Axis of the Hippocampus: Are Depression and the Action of Antidepressants Region-Specific? Neuroscience, 252, 234-252.
https://doi.org/10.1016/j.neuroscience.2013.08.017

[19]   Mattson, M.P. (2008) Glutamate and Neurotrophic Factors in Neuronal Plasticity and Disease. Annals of the New York Academy of Sciences, 1144, 97-112.
https://doi.org/10.1196/annals.1418.005

[20]   Lee, E. and Son, H. (2009) Adult Hippocampal Neurogenesis and Related Neurotrophic Factors. BMB Reports, 42, 239-244.
https://doi.org/10.5483/BMBRep.2009.42.5.239

[21]   Cohen-Cory, S., Kidane, A.H., Shirkey, N.J. and Marshak, S. (2010) Brain-Derived Neurotrophic Factor and the Development of Structural Neuronal Connectivity. Developmental Neurobiology, 70, 271-288.
https://doi.org/10.1002/dneu.20774

[22]   Kuczewski, N., Porcher, C., Lessmann, V., Medina, I. and Gaiarsa, J.L. (2009) Activity-Dependent Dendritic Release of BDNF and Biological Consequences. Molecular Neurobiology, 39, 37-49.
https://doi.org/10.1007/s12035-009-8050-7

[23]   Rossi, C., Angelucci, A., Costantin, L., Braschi, C., Mazzantini, M., Babbini, F., Fabbri, M.E., Tessarollo, L., Maffei, L., Berardi, N. and Caleo, M. (2006) Brain-Derived Neurotrophic Factor (BDNF) Is Required for the Enhancement of Hippocampal Neurogenesis Following Environmental Enrichment. European Journal of Neuroscience, 24, 1850-1856.
https://doi.org/10.1111/j.1460-9568.2006.05059.x

[24]   Donovan, M.H., Yamaguchi, M. and Eisch, A.J. (2008) Dynamic Expression of TrkB Receptor Protein on Proliferating and Maturing Cells in the Adult Mouse Dentate gyrus. Hippocampus, 18, 435-439.
https://doi.org/10.1002/hipo.20410

[25]   Li, Y., Luikart, B.W., Birnbaum, S., Chen, J., Kwon, C.H., Kernie, S.G., Bassel-Duby, R. and Parada, L.F. (2008) TrkB Regulates Hippocampal Neurogenesis and Governs Sensitivity to Antidepressive Treatment. Neuron, 59, 399-412.
https://doi.org/10.1016/j.neuron.2008.06.023

[26]   Numakawa, T., Suzuki, S., Kumamaru, E., Adachi, N., Richards, M. and Kunugi, H. (2010) BDNF Function and Intracellular Signaling in Neurons. Histology and Histopathology, 25, 237-258.

[27]   Dijkhuizen, P.A. and Ghosh, A. (2005) BDNF Regulates Primary dendrite Formation in Cortical Neurons via the PI3-Kinase and MAP Kinase Signaling Pathways. Journal of Neurobiology, 62, 278-288.
https://doi.org/10.1002/neu.20100

[28]   Schmierer, B. and Hill, C.S. (2007) TGFbeta-SMAD Signal Transduction: Molecular Specificity and Functional Flexibility. Nature Reviews Molecular Cell Biology, 8, 970-982.
https://doi.org/10.1038/nrm2297

[29]   Lin, X., Duan, X., Liang, Y.Y., Su, Y., Wrighton, K.H., Long, J., Hu, M., Davis, C.M., Wang, J., F Brunicardi. C., Shi, Y., Chen, Y.G., Meng, A. and Feng, X.H. (2006) PPM1A Functions as a Smad Phosphatase to Terminate TGFbeta Signaling. Cell, 125, 915-928.
https://doi.org/10.1016/j.cell.2006.03.044

[30]   Ranger, A.M., Malynn, B.A. and Korsmeyer, S.J. (2001) Mouse Models of Cell Death. Nature Genetics, 28, 113-118.
https://doi.org/10.1038/88815

[31]   Germain, M. and Slack, R.S. (2010) Dining in with BCL-2: New Guests at the Autophagy Table. Clinical Science, 118, 173-181.
https://doi.org/10.1042/CS20090310

[32]   Li, J. and Yuan, J. (2008) Caspases in Apoptosis and Beyond. Oncogene, 27, 6194-6206.
https://doi.org/10.1038/onc.2008.297

[33]   Cory, S. and Adams, J.M. (2002) The Bcl2 Family: Regulators of the Cellular Life-or-Death Switch. Nature Reviews Cancer, 2, 647-656.
https://doi.org/10.1038/nrc883

[34]   Zou, H., Li, Y., Liu, X. and Wang, X. (1999) An APAF-1. Cytochrome C Multimeric Complex Is a Functional Apoptosome That Activates Procaspase-9. Journal of Biological Chemistry, 274, 11549-11556.
https://doi.org/10.1074/jbc.274.17.11549

[35]   Osford, S.M., Dallman, C.L., Johnson, P.W., Ganesan, A. and Packham, G. (2004) Current Strategies to Target the Anti-Apoptotic Bcl-2 Protein in Cancer Cells. Current Medicinal Chemistry, 11, 1031-1039.
https://doi.org/10.2174/0929867043455486

[36]   Santello, M. and Volterra, A. (2012) TNFalpha in Synaptic Function: Switching Gears. Trends in Neurosciences, 35, 638-647.
https://doi.org/10.1016/j.tins.2012.06.001

[37]   Watters, O. and O’Connor, J.J. (2011) A Role for Tumor Necrosis Factor-Alpha in Ischemia and Ischemic Preconditioning. Journal of Neuroinflammation, 8, Article No. 87.
https://doi.org/10.1186/1742-2094-8-87

[38]   Khanna, A., Muthusamy, S., Liang, R., Sarojini, H. and Wang, E. (2011) Gain of Survival Signaling by Down-Regulation of Three Key miRNAs in Brain of Calorie-Restricted Mice. Aging, 3, 223-236.
https://doi.org/10.18632/aging.100276

[39]   Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., Rassenti, L., Alder, H., Volinia, S., Liu, C.G., Kipps, T.J., Negrini, M. and Croce, C.M. (2005) MiR-15 and MiR-16 Induce Apoptosis by Targeting BCL2. Proceedings of the National Academy of Sciences of the United States of America, 102, 13944-13949.
https://doi.org/10.1073/pnas.0506654102

[40]   Wang, J., Yao, S., Diao, Y., Geng, Y., Bi, Y. and Liu, G. (2020) MiR-15b Enhances the Proliferation and Migration of Lung Adenocarcinoma by Targeting BCL2. Thoracic Cancer, 11, 1396-1405.
https://doi.org/10.1111/1759-7714.13382

[41]   Jackson, D.M. and Westlind-Danielsson, A. (1994) Dopamine Receptors: Molecular Biology, Biochemistry and Behavioural Aspects. Pharmacology & Therapeutics, 64, 291-370.
https://doi.org/10.1016/0163-7258(94)90041-8

[42]   de Keyser, J., De Backer, J.P., Vauquelin, G. and Ebinger, G. (1990) The Effect of Aging on the D1 Dopamine Receptors in Human Frontal Cortex. Brain Research, 528, 308-310.
https://doi.org/10.1016/0006-8993(90)91672-4

 
 
Top