Back
 YM  Vol.6 No.2 , June 2022
MiRNA-181d Is Involved in CREB1 Expression in PC12 Cells
Abstract: MicroRNAs are involved in regulation of the central nervous system (CNS) development, and miR-181d highly expressed in mature neurons. CREB is many signal pathways converged point in hippocampal neurons, and it plays a crucial role in learning and memory. In this study, we detected the negative relationship between CREB1 protein and miR-181d expression in lewis rat hippocampus development. And the bioinformatic analysis showed that, CREB1 mRNA contains complementary sequence to the miR-181d seed region. Then we further demonstrated that miR-181d controls the expression level of CREB1 gene in PC12 cells by luciferase assay and western blot. Taken together, our data demonstrated that CREB1 mRNA is the target gene of miR-181d, and conformed CREB1 protein expression was regulated by miR-181d in PC12 cells.
Cite this paper: Yang, J. , Yu, Y. , Su, B. , Zheng, Y. and Liu, Y. (2022) MiRNA-181d Is Involved in CREB1 Expression in PC12 Cells. Yangtze Medicine, 6, 13-23. doi: 10.4236/ym.2022.62002.
References

[1]   Lee, Y., Kim, M., Han, J., Yeom, K.H., Lee, S., Baek, S.H. and Kim, V.N. (2004) MicroRNA Genes Are Transcribed by RNA Polymerase II. The EMBO Journal, 23, 4051-4060.
https://doi.org/10.1038/sj.emboj.7600385

[2]   Roufayel, R. and Kadry, S. (2020) MicroRNAs: Crucial Regulators of Stress. Microrna, 9, 93-100.
https://doi.org/10.2174/2211536608666190625120127

[3]   Lee, Y., Ahn, C., Han, J., Choi, H., Kim, J., Yim, J., Lee, J., Provost, P., Radmark, O., Kim, S. and Kim, V.N. (2003) The Nuclear RNase III Drosha Initiates MicroRNA Processing. Nature, 425, 415-419.
https://doi.org/10.1038/nature01957

[4]   Han, J., Lee, Y., Yeom, K.H., Kim, Y.K., Jin, H. and Kim, V.N. (2004) The Drosha-DGCR8 Complex in Primary MicroRNA Processing. Genes & Development, 18, 3016-3027.
https://doi.org/10.1101/gad.1262504

[5]   Lund, E., Guttinger, S., Calado, A., Dahlberg, J.E. and Kutay, U. (2004) Nuclear Export of MicroRNA Precursors. Science, 303, 95-98.
https://doi.org/10.1126/science.1090599

[6]   Hutvagner, G., McLachlan, J., Pasquinelli, A.E., Balint, E., Tuschl, T. and Zamore, P.D. (2001) A Cellular Function for the RNA-Interference Enzyme Dicer in the Maturation of the Let-7 Small Temporal RNA. Science, 293, 834-838.
https://doi.org/10.1126/science.1062961

[7]   Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. Elegans Heterochronic Gene Lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14. Cell, 75, 843-854.
https://doi.org/10.1016/0092-8674(93)90529-Y

[8]   Diggins, N.L., Crawford, L.B., Struthers, H.M., Hook, L.M., Landais, I., Skalsky, R.L. and Hancock, M.H. (2021) Techniques for Characterizing Cytomegalovirus-Encoded MiRNAs. Methods in Molecular Biology, 2244, 301-342.
https://doi.org/10.1007/978-1-0716-1111-1_16

[9]   Kulik, G., Klippel, A. and Weber, M.J. (1997) Antiapoptotic Signalling by the Insulin-Like Growth Factor I Receptor, Phosphatidylinositol 3-Kinase, and Akt. Molecular and Cellular Biology, 17, 1595-1606.
https://doi.org/10.1128/MCB.17.3.1595

[10]   Johannessen, M., Delghandi, M.P. and Moens, U. (2004) What Turns CREB on? Cellular Signalling, 16, 1211-1227.
https://doi.org/10.1016/j.cellsig.2004.05.001

[11]   Bartsch, D., Ghirardi, M., Skehel, P.A., Karl, K.A., Herder, S.P., Chen, M., Bailey, C.H. and Kandel, E.R. (1995) Aplysia CREB2 Represses Long-Term Facilitation: Relief of Repression Converts Transient Facilitation into Long-Term Functional and Structural Change. Cell, 83, 979-992.
https://doi.org/10.1016/0092-8674(95)90213-9

[12]   Amidfar, M., de Oliveira, J., Kucharska, E., Budni, J. and Kim, Y.K. (2020) The Role of CREB and BDNF in Neurobiology and Treatment of Alzheimer’s Disease. Life Sciences, 257, Article ID: 118020.
https://doi.org/10.1016/j.lfs.2020.118020

[13]   Mozzachiodi, R. and Byrne, J.H. (2010) More Than Synaptic Plasticity: Role of Nonsynaptic Plasticity in Learning and Memory. Trends in Neurosciences, 33, 17-26.
https://doi.org/10.1016/j.tins.2009.10.001

[14]   Kaldun, J.C. and Sprecher, S.G. (2019) Initiated by CREB: Resolving Gene Regulatory Programs in Learning and Memory Switch in Cofactors and Transcription Regulators between Memory Consolidation and Maintenance Network. Bioessays, 41, e1900045.
https://doi.org/10.1002/bies.201900045

[15]   Mouravlev, A., Dunning, J., Young, D. and During, M.J. (2006) Somatic Gene Transfer of cAMP Response Element-Binding Protein Attenuates Memory Impairment in Aging Rats. Proceedings of the National Academy of Sciences of the United States of America, 103, 4705-4710.
https://doi.org/10.1073/pnas.0506137103

[16]   Pugazhenthi, S., Boras, T., O’Connor, D., Meintzer, M.K., Heidenreich, K.A. and Reusch, J.E. (1999) Insulin-Like Growth Factor I-Mediated Activation of the Transcription Factor cAMP Response Element-Binding Protein in PC12 Cells. Involvement of p38 Mitogen-Activated Protein Kinase-Mediated Pathway. Journal of Biological Chemistry, 274, 2829-2837.
https://doi.org/10.1074/jbc.274.5.2829

[17]   Miska, E.A., Alvarez-Saavedra, E., Townsend, M., Yoshii, A., Sestan, N., Rakic, P., Constantine-Paton, M. and Horvitz, H.R. (2004) Microarray Analysis of MicroRNA Expression in the Developing Mammalian Brain. Genome Biology, 5, Article No. R68.
https://doi.org/10.1186/gb-2004-5-9-r68

[18]   Ma, S.Q., Xu, X.X., He, Z.Z., Li, X.H. and Luo, J.M. (2019) Dynamic Changes in Peripheral Blood-Targeted MiRNA Expression Profiles in Patients with Severe Traumatic Brain Injury at High Altitude. Military Medical Research, 6, Article No. 12.
https://doi.org/10.1186/s40779-019-0203-z

[19]   Smith, B., Treadwell, J., Zhang, D., Ly, D., McKinnell, I., Walker, P.R. and Sikorska, M. (2010) Large-Scale Expression Analysis Reveals Distinct MicroRNA Profiles at Different Stages of Human Neurodevelopment. PLOS One, 5, e11109.
https://doi.org/10.1371/journal.pone.0011109

[20]   Glowinski, J. and Iversen, L.L. (1966) Regional Studies of Catecholamines in the rat Brain. I. The Disposition of [3H]Norepinephrine, [3H]Dopamine and [3H]Dopa in Various Regions of the Brain. Journal of Neurochemistry, 13, 655-669.
https://doi.org/10.1111/j.1471-4159.1966.tb09873.x

[21]   Berezikov, E., Guryev, V., van de Belt, J., Wienholds, E., Plasterk, R.H. and Cuppen, E. (2005) Phylogenetic Shadowing and Computational Identification of Human MicroRNA Genes. Cell, 120, 21-24.
https://doi.org/10.1016/j.cell.2004.12.031

[22]   Saliminejad, K., Khorram Khorshid, H.R., Soleymani Fard, S. and Ghaffari, S.H. (2019) An Overview of MicroRNAs: Biology, Functions, Therapeutics, and Analysis Methods. Journal of Cellular Physiology, 234, 5451-5465.
https://doi.org/10.1002/jcp.27486

[23]   Lewis, B.P., Burge, C.B. and Bartel, D.P. (2005) Conserved Seed Pairing, often Flanked by Adenosines, Indicates that Thousands of Human Genes Are MicroRNA Targets. Cell, 120, 15-20.
https://doi.org/10.1016/j.cell.2004.12.035

[24]   Kapsimali, M., Kloosterman, W.P., de Bruijn, E., Rosa, F., Plasterk, R.H. and Wilson, S.W. (2007) MicroRNAs Show a Wide Diversity of Expression Profiles in the Developing and Mature Central Nervous System. Genome Biology, 8, Article No. R173.
https://doi.org/10.1186/gb-2007-8-8-r173

[25]   Disterhoft, J.F. and Oh, M.M. (2006) Learning, Aging and Intrinsic Neuronal Plasticity. Trends in Neurosciences, 29, 587-599.
https://doi.org/10.1016/j.tins.2006.08.005

 
 
Top