Back
 AiM  Vol.12 No.6 , June 2022
Phenotypic and Genotypic Characterization of Metallo-Beta-Lactamase and Extended-Spectrum Beta-Lactamase among Enterobacteria Isolated at National Public Health Laboratory of Brazzaville
Abstract: The improper use of antimicrobials against infectious diseases has allowed microorganisms to develop defense mechanisms that give them insensitivity to these agents. All bacteria are concerned by this phenomenon. This work aimed to assess prevalence of beta-lactamase produced by enterobacterial isolates. Then, disc diffusion, double disc synergy test (DDST) and combined disc test (CDT) were respectively used for antimicrobial resistance, detection of Extended-Spectrum Beta-Lactamases (ESBL) and Metallo-Beta-Lactamases (MBL). bla genes were detected by PCR. A total of 132 enterobacterial strains were studied. Resistance to antibiotic families was observed with a greater frequency than 50%. Gentamicin was the least active beta-lactam antibiotic, with a resistance rate of 88%. 40.9% of strains show an ESBL phenotype and 16.6% were MBL. An overall prevalence of 74% (40/54) and respectively rates of 29.6%, 27.7% and 16.7% for blaSHV, blaCTX and blaTEM genes were observed. SHV, CTX, CTX/SHV/TEM, CTX/TEM, SHV/TEM and CTX/SHV were different ESBL genotypes observed. ESBL-producing enterobacteria isolation worried about the future of antimicrobial therapy in the Republic of Congo. This is a public health problem that requires careful monitoring and implementation of a policy of rational antibiotics use.
Cite this paper: Dangui Nieko, N. , Morabandza, C. , Kaya-Ongoto, M. , Kinouani Kinavouidi, D. , Mikia, H. , Kangoula-Dia-Kikouidi-Kia-Louzala, F. and Niama, F. (2022) Phenotypic and Genotypic Characterization of Metallo-Beta-Lactamase and Extended-Spectrum Beta-Lactamase among Enterobacteria Isolated at National Public Health Laboratory of Brazzaville. Advances in Microbiology, 12, 363-377. doi: 10.4236/aim.2022.126026.
References

[1]   Bryskier, A. (1999) Epidémiologie de la résistance aux antibactériens. In: Antibiotiques, agents antibactériens et antifongiques, Ellipses, Paris, 91.

[2]   Meletis, G. (2015) Carbapenem Resistance: Overview of the Problem and Future Perpectives. Therapeutic Advances in Infectious Disease, 3, 15-21.
https://doi.org/10.1177/2049936115621709

[3]   WHO (World Health Organization) (2014) RESIS. WHO Report, World Health Organization, Geneva.

[4]   Bradford, P.A. (2001) Extended-Spectrum Beta-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistant Threat. Clinical Microbiology Reviews, 14, 933-951.
https://doi.org/10.1128/CMR.14.4.933-951.2001

[5]   Ambler, R.P. (1980) The Structure of β-Lactamases. Philosophical Transactions of the Royal Society of London. B, Biological Sciences, 289, 321-331.
https://doi.org/10.1098/rstb.1980.0049

[6]   Kansaye, H. (2020) Phénotypes de résistance aux bêta-lactamines des souches d’entérobactéries isolées de pus, d’hémoculture et de selles au CHU du point G. Thèse de Doctorat, Université des sciences des techniques et des technologies de Bamako, 99 p.

[7]   Bebrone, C. (2007) Metallo-Beta-Lactamases (Classification, Activity, Genetic Organization, Structure, Zinc Coordination) and Their Superfamily. Biochemical Pharmacology, 74, 1686-1701.
https://doi.org/10.1016/j.bcp.2007.05.021

[8]   Walsh, T.R., Toleman, M.A., Poirel, L. and Nordmann, P. (2005) Metallo-β-Lactamases: The Quiet before the Storm? Clinical Microbiology Reviews, 18, 306-325.
https://doi.org/10.1128/CMR.18.2.306-325.2005

[9]   Poirel, L., Pitout, J.D. and Nordmann, P. (2007) Carbapenemases: Molecular Diversity and Clinical Consequences. Future Microbiology, 2, 501-512.
https://doi.org/10.2217/17460913.2.5.501

[10]   Nicolau, D.P. (2008) Carbapenems: A Potent Class of Antibiotics. Expert Opinion on Pharmacotherapy, 9, 23-37.
https://doi.org/10.1517/14656566.9.1.23

[11]   Karabay, O., Altindis, M., Koroglu, M., Karatuna, O., Aydemir, O.A., and Erdem, A.F. (2016) The Carbapenem-Resistant Enterobacteriaceae Threat Is Growing: NDM-1 Epidemic at a Training Hospital in Turkey. Annals of Clinical Microbiology and Antimicrobials, 15, Article No. 6.
https://doi.org/10.1186/s12941-016-0118-4

[12]   Wang, J., Yao, X., Luo, J., Zeng, L., Lv, Z. and Liu, J.H. (2018) Emergence of Escherichia coli coproducing NDM-1 and KPC-2 Carbapenemases from a Retail Vegetable, China. Journal of Antimicrobial Chemotherapy, 73, 252-254.
https://doi.org/10.1093/jac/dkx335

[13]   Torres-González, P., Bobadilla-del Valle, M., Tovar-Calderón, E., Leal-Vega, F., Hernández-Cruz, A., Martínez-Gamboa, A., et al. (2015) Outbreak Caused by Enterobacteriaceae Harboring NDM-1 Metallo-β-Lactamase Carried in an IncFII Plasmid in a Tertiary Care Hospital in Mexico City. Antimicrobial Agents and Chemotherapy, 59, 7080-7083.
https://doi.org/10.1128/AAC.00055-15

[14]   Rossi Gonçalves, I., Ferreira, M.L., Araujo, B.F., Campos, P.A., Royer, S., Batistão, D.W., et al. (2016) Outbreaks of Colistin-Resistant and Colistin-Susceptible KPC-Producing Klebsiella pneumoniae in a Brazilian Intensive Care Unit. Journal of Hospital Infection, 94, 322-329.
https://doi.org/10.1016/j.jhin.2016.08.019

[15]   Elouennas, M., Sahnoum, I., Zrara, A. and Bajjou, T. (2008) Epidemiology and susceptibility profile of blood Culture Isolates in an Intensive Care Unit (2002-2005). Médecine et Maladies Infectieuses, 38, 18-24.
https://doi.org/10.1016/j.medmal.2007.10.006

[16]   Gba Karine, M.K., Guessennd Nathalie, K., Makaya Dangui Nieko Nicole, P., Tahou Eric, J., Konan, F., et al. (2018) Detection of Metallo-beta-lactamase Producing Pseudomonas aeruginosa in an Abidjan Hospital, Côte d’Ivoire. Journal of Advances in Microbiology, 8, 1-7.
https://doi.org/10.9734/JAMB/2018/39343

[17]   Kaya-Ongoto, M.D., Kayath, C.A., Nguimbi, E., Lebonguy, A.A., Nzaou, S.A.E., Elenga Wilson, P.S., et al. (2019) Genetic clearness novel strategy of group I Bacillus Species Isolated from Fermented Food and Beverages by Using Fibrinolytic Enzyme Gene Encoding a Serine-Like Enzyme. Journal of Nucleic Acids, 2019, Article ID: 5484896.
https://doi.org/10.1155/2019/5484896

[18]   Saderi, H., Karimi, Z., Owlia, P., Bahar, A. and Akhavi, R.S.M. (2008) Phenotypic Detection of Metallobeta-Lactamase-Producing Pseudomonas aeruginosa Strain Isolated from Burned Patients. Iranian Journal of Pathology, 3, 20-24.

[19]   Sedighi, M., Halajzadeh, M., Ramazanzadeh, R., Amirmozafari, N., Heidary, M. and Pirouzi, S. (2017) Molecular Detection of β-Lactamase and Integron Genes in clinical Strains of Klebsiella pneumoniae by Multiplex Polymerase Chain Reaction. Revista da Sociedade Brasileira de Medicina Tropica, 50, 321-328.
https://doi.org/10.1590/0037-8682-0001-2017

[20]   CLSI (Clinical and Laboratory Standards Institute) (2021) Performance standards for antimicrobial susceptibility testing. 25th informational supplement, Clinical and Laboratory Standards Institute, Wayne, M100-S25.

[21]   Yong, D., Lee, K., Yum, J., Shin, H., Rossolini, G. and Chong, Y. (2002) Imipenem-EDTA Disk Method for Differentiation of Metallo-Beta-Lactamase-Producing Clinical Isolates of Pseudomonas spp. and Acinetobacter spp. Journal of Clinical Microbiology, 40, 3798-3801.
https://doi.org/10.1128/JCM.40.10.3798-3801.2002

[22]   Frascas, D., Dahyot Fizelier, C. and Mimoz, O. (2008) La colistine en reanimation. Réanimation, 17, 251-258.
https://doi.org/10.1016/j.reaurg.2008.01.005

[23]   Sturenburg, E., Kuhn, A., Mack, D. andLaufs, R. (2004) A Novel Extended-Spectrum Beta-Lactamase CTX-M-23 with a P167T Substitution in the Activesite Omega Loop Associated with Ceftazidime Resistance. Journal of Antimicrobial Chemotherapy, 54, 406-409.
https://doi.org/10.1093/jac/dkh334

[24]   Yagi, T., Kurokawa, H., Shibata, N., Shibayama K and Arakawa, Y. (2000) A Preliminary Survey of Extended-Spectrum Beta-Lactamases (ESBLs) in Clinical Isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiology Letters, 184, 53-56.
https://doi.org/10.1111/j.1574-6968.2000.tb08989.x

[25]   Essack, S.Y., Hall, L.M. and Livermore, D.M. (2004) Klebsiella pneumoniae Isolate from South Africa with Multiple TEM, SHV and AmpC Beta-Lactamases. International Journal of Antimicrobial Agents, 23, 398-400.
https://doi.org/10.1016/j.ijantimicag.2003.08.010

[26]   Bahmani, N. (2019) Detection of VIM-1, VIM-2 and IMP-1 Metallo-β-lactamase genes in Klebsiella pneumoniae Isolated from Clinical Samples in Sanandaj, Kurdistan, West of Iran. Iranian Journal of Microbiology, 11, 225-231.
https://doi.org/10.18502/ijm.v11i3.1325

[27]   Abo-State, M., Saleh, Y. and Ghareeb, M. (2018) Prevalence and Sequence of Aminoglycosides Modifying Enzymes Genes among E. coli and Klebsiella Species Isolated from Egyptian Hospitals. Journal of Radiation Research and Applied Sciences, 11, 408-415.
https://doi.org/10.1016/j.jrras.2018.08.005

[28]   Jamali, L., Haouzane, F., Bouchakour, M., Oufrid, S., Ghazlane, Z., El Mdaghri, N., Nadifi, S. and Timinouni, M. (2014) Prevalence of Plasmid Mediated Quinolone Resistance Genes among Enterobacteria Isolates in Moroccan Community. International Journal of Innovation and Scientific Research, 11, 387-399.

[29]   Bakiri, N. and Amamra, I. (2009) Etude de l’antibiorésistance de souche d’entérobactéries isolées des eaux polluées et en milieu hospitalier, Microbiologie général et biologie moléculaire des micro-organismes. Université des frères Mentouri Constantine, Constantine, 1 p.

[30]   Decré, D. (2012) Acinetobacter baumannii et résistance aux antibiotiques: Un modèle d’adaptation. Revue francophone des laboratories, 441, 43-52.
https://doi.org/10.1016/S1773-035X(12)71412-0

[31]   Bradford, P.A. (2001) Extended-Spectrum Beta-Lactamases in the 21st Century: Characterization, Epidemiology, and Detection of This Important Resistance Threat. Clinical Microbiology Reviews, 14, 933-951.
https://doi.org/10.1128/CMR.14.4.933-951.2001

[32]   Thabet, L., Memmi, M., Turki, A. and Messadi, A.A. (2010) The Impact of Use an Antibiotic Resistance in an Intensive Care Burn Department. Laboratory of Biology, 88, 296-300.

[33]   Ferjani, A., Mkaddemi, H., Tilouche, S., Marzouk, M., Hannechi, N., Boughammoura, L. and Boukadida, J. (2011) Caractéristiques épidémiologiques et bactériologiques des bactéries uropathogènes isolées dans un milieu pédiatrique. Archives de Pédiatrie, 18, 230-234.
https://doi.org/10.1016/j.arcped.2010.09.024

[34]   Guessennd, N.K., Ouattara, M.B., Ouattara, N.D., Nevry, R.K., Gbonon, V., Tiekoura, K.B., et al. (2013) étude des bactéries multirésistantes des effluents hospitaliers d’un centre hospitalier et universitaire (CHU) de la ville d’Abidjan (Côte d’Ivoire). Journal of Applied Biosciences, 69, 5456-5464.
https://doi.org/10.4314/jab.v69i0.95071

[35]   Asadolah-Malayeri, H.O., Hakemi-Vala, M. and Davari, K. (2016) Role of Aders and OXA23 genes among Imipenem resistant Acinetobacter baumannii isolates from two hospitals of Tehran, Iran. Iranian Journal of Pathology, 11, 345-353.
https://doi.org/10.1016/j.antinf.2011.03.005

[36]   Grall, N., Andremont, A. and Armand-Lefèvre, L. (2011) Résistance aux carbapénèmes: Vers une nouvelle impasse? Journal des Anti-Infectieux, 13, 87-102.

[37]   Mesaros, N., Van Bambeke, F.J., Glupczynski, Y. and Tulkens, P.M. (2005) L’efflux des Antibiotiques: Un Mécanise Ubiquitaire Conduisant à la Résistance. Etat de la Question et Implications microbiologiques et Cliniques. Louvain Médical, 125, 308-320.

[38]   Sbiti, M., Lahmadi, K. and louzi, L. (2017) Profil épidémiologique des entérobactéries uropathogènes productrices de bêta-lactamases à spectre élargi. Pan African Medical Journal, 28, Article No. 29, 8 p.
https://doi.org/10.11604/pamj.2017.28.29.11402

[39]   Henniche, F.Z., Yamouni, F., Bensersa, D., Sebahi, H., Aggoune, N., Chabani, A. and Zerouki, A. (2021) Infection urinaire à entérobactéries productrices des β-lactamases à spectre élargi chez l’enfant: Fréquence, facteurs de risque et alternatives thérapeutiques”. Journal de Pédiatrie et de Puériculture, 34, 223-228.
https://doi.org/10.1016/j.jpp.2021.05.005

[40]   Shahid, M., Singh, A., Sobia, F., Rashid, M., Malik, A., Shukla, I. and Khan, H. (2011) blaCTX-M, blaTEM, and blaSHV in Enterobacteriaceae from North-Indian Tertiary Hospital: High Occurrence of Combination Genes. Asian Pacific Journal of Tropical Medicine, 4, 101-105.
https://doi.org/10.1016/S1995-7645(11)60046-1

[41]   Paveza, M., Troncosoa, C., Ossesa, I., Salazara, R., Illesca, V., Reydetc, P., Rodríguezc, C., Chahind, C., Conchad, C. and Barrientos, L. (2019) High Prevalence of CTX-M-1 Group in ESBL-Producing Enterobacteriaceae Infection in Intensive Care Units in Southern Chile. The Brazilian Journal of Infectious Diseases, 23, 102-110.
https://doi.org/10.1016/j.bjid.2019.03.002

[42]   Raji, M.A., Jamal, W., Ojemeh, O. and Rotimi, V.O. (2015) Sequence Analysis of Genes Mediating Extended-Spectrum Beta-Lactamase (ESBL) Production in Isolates of Enterobacteriaceae in a Lagos Teaching Hospital, Nigeria. BMC Infectious Diseases, 15, Article No. 259.
https://doi.org/10.1186/s12879-015-1005-x

[43]   Hagel, S., Stallmach, A., Keller, P. and Pletz, M. (2015) Multiresistant Organisms. Zentralblatt fur Chirurgie, 140, 417-425.
https://doi.org/10.1055/s-0032-1328343

[44]   Skurnik, D. and Andremont, A. (2006) Antibiothérapie sélectionnante: De la théorie à la pratique. Réanimation, 15, 198-204.
https://doi.org/10.1016/j.reaurg.2006.03.002

 
 
Top