Back
 AAST  Vol.7 No.2 , June 2022
Calculation of Aerodynamic Characteristics of Hypersonic Vehicles Based on the Surface Element Method
Abstract: A program for calculating the aerodynamic properties of hypersonic vehicles based on the surface element method was developed using the general-purpose programming language C++. The calculated values of lift coefficients, drag coefficients, and surface pressure coefficients are discussed with the results of wind tunnel experiments using the HL-20 lift body and the NASA hypersonic aircraft STS Columbia OV-102 as research subjects. Finally, the results of the experimental and wind tunnel studies of the aerodynamic characteristics of the HL-20 lift body at an altitude of 65 km and Mach numbers of 6 and 10 Ma are discussed. The maximum error in the aerodynamic characteristics at 6 Ma does not exceed 3%, consistent with the results. The maximum error at 10 Ma occurs in the 11° - 14° angle of attack and does not exceed 10%, which is still within the error tolerance. The STS results for NASA’s hypersonic aircraft were also tested using this procedure. Experimental aerodynamic data for the Colombian OV-102 aircraft. The results show that the program takes only 10 minutes to calculate the results, with no more than 2% error from the wind tunnel experimental results.
Cite this paper: Huang, T. , He, G. and Wang, Q. (2022) Calculation of Aerodynamic Characteristics of Hypersonic Vehicles Based on the Surface Element Method. Advances in Aerospace Science and Technology, 7, 112-122. doi: 10.4236/aast.2022.72007.
References

[1]   Irimpan, K.J., Menezes, V., Srinivasan, K. and Hosseini, H. (2018) Nose-Tip Transition Control by Surface Roughness on a Hypersonic Sphere. Journal of Flow Control, Measurement & Visualization, 6, 125-135.
https://doi.org/10.4236/jfcmv.2018.63011

[2]   Li, J., Jiang, D., Geng, X. and Chen, J. (2021) Kinetic Comparative Study on Aerodynamic Characteristics of Hypersonic Reentry Vehicle from Near-Continuous Flow to Free Molecular Flow. Advances in Aerodynamics, 3, Article No. 10.
https://doi.org/10.1186/s42774-021-00063-0

[3]   Zhao, T., Ren, W., Yin, T. and Wang, F. (2021) Calculation of the Coupling Coefficient of Twin-Core Fiber Based on the Supermode Theory with Finite Element Method. Optics and Photonics Journal, 11, 402-411.
https://doi.org/10.4236/opj.2021.118029

[4]   Ware, G.M. and Cruz, C.I. (1993) Aerodynamic Characteristics of the HL-20. Journal of Spacecraft and Rockets, 30, 529-536.
https://doi.org/10.2514/3.25562

[5]   Yang, Z., Wang, S. and Gao, Z. (2022) Studies on Effects of Wall Temperature Variation on Heat Transfer in Hypersonic Laminar Boundary Layer. International Journal of Heat and Mass Transfer, 190, Article ID: 122790.
https://doi.org/10.1016/j.ijheatmasstransfer.2022.122790

[6]   Yilmaz, Y. and Ozturan, C. (2015) Using Sequential NETGEN as a Component for a Parallel Mesh Generator. Advances in Engineering Software, 84, 3-12.
https://doi.org/10.1016/j.advengsoft.2014.12.013

[7]   Schöberl, J. (2016) Netgen Mesh Generator.
https://sourceforge.net/projects/netgen-mesher/

[8]   Lyu, F.X., Li, Z.Z., Deng, J.S., Xiao, T.H. and Yu, X.Q. (2017) An Aerodynamic Analysis Tool for Aircraft Conceptual Design at Full Speed Range. Acta Aerodynamica Sinica, 35, 625-632.

[9]   Chang, X.H., Ma, R., Wang, N.H. and Zhang, L.P. (2018) Parallel Implicit Hole-Cutting Method for Unstructured Chimera Grid. Acta Aeronautica et Astronautica Sinica, 39, 48-58.

[10]   Zhao, M. (2021) Prediction and Validation Technologies of Aerodynamic Force and Heat for Hypersonic Vehicle Design. Springer Nature, Berlin.
https://doi.org/10.1007/978-981-33-6526-1

[11]   Martindale, W.R. and Carter, L.D. (1975) Flow-Field Measurements in the Windward Surface Shock Layer of Space Shuttle Orbiter Configurations at Mach Number 8. Arnold Engineering Development Center, Arnold Afb Tn.
https://doi.org/10.21236/ADA012875

[12]   Wang, P., Fang, S.A., Jin, X. and Zhang, W.M. (2017) Calculation Methods for Aerodynamic Thermal Characteristics of Aerospace Vehicles at Hypersonic Speeds. Chinese Journal of Aerodynamics, 35, 640-644.

 
 
Top