[1] Viegas, D., Stipanicev, D., Ribeiro, L., Pita, L. and Rossa, C. (2008) The Kornati Fire Accident—Eruptive Fire in Relatively Low Fuel Load Herbaceous Fuel Conditions. WIT Transactions on Ecology and the Environment, 119, 365-375.
https://doi.org/10.2495/FIVA080361
[2] Dold, J., Simeoni, A., Zinoviev, A. and Weber, R. (2009) The Palasca Fire, September 2000: Eruption or Flashover? In: Viegas, D.X., Simeoni, A., Xanthopoulos, G., Rossa, C., Ribeiro, L., Pita, L., et al., Ed., Recent Forest Fire Related Accidents in Europe, Publications Office of the European Union, Luxembourg, 54-64.
[3] Barboni, T., Cannac, M., Leoni, E. and Chiaramonti, N. (2010) Emission of Biogenic Volatile Organic Compounds Involved in Eruptive Fire: Implications for the Safety of Firefighters. International Journal of Wildland Fire, 20, 152-161.
https://doi.org/10.1071/WF08122
[4] Chatelon, J., Sauvagnargues, S., Dusserre, G. and Balbi, J. (2014) Generalized Blaze Flash, a “Flashover” Behavior for Forest Fires-Analysis from the Firefighter's Point of View. Open Journal of Forestry, 4, 547-557.
https://doi.org/10.4236/ojf.2014.45059
[5] Coudour, B., Chetehouna, K., Conan, B., Aubrun, S., Kaiss, A. and Garo, J.P. (2016) Experimental and Numerical Investigations of the Geometry Influence on Gas Accumulation using a V-Shaped Forest Model. Atmospheric Environment, 141, 67-79.
https://doi.org/10.1016/j.atmosenv.2016.06.051
[6] Viegas, D. and Pita, L. (2004) Fire Spread in Canyons. International Journal of Wildland Fire, 13, 253-274.
https://doi.org/10.1071/WF03050
[7] Courty, L., Chetehouna, K., Garo, J.P. and Fernandez-Pello, C. (2014) Experimental Investigations on Accelerating Forest Fires Thermochemical Hypothesis. In: Viegas, D.X., Ed., Advances in Forest Fire Research, Coimbra, 23-30.
https://doi.org/10.14195/978-989-26-0884-6_22
[8] Evtyugina, M., Calvo, A., Nunes, T., Alves, C., Fernandes, A., Tarelho, L., Vicente, A. and Pio, C. (2013) VOC Emissions of Smouldering Combustion from Mediterranean Wildfires in Central Portugal. Atmospheric Environment, 64, 339-348.
https://doi.org/10.1016/j.atmosenv.2012.10.001
[9] Akagi, S.K., Yokelson, R.J., Burling, I.R., Meinardi, S., Simpson, I., Blake, D.R., McMeeking, G.R., Sullivan, A., Lee, T., Kreidenweis, S., Urbanski, S., Reardon, J., Griffith, D.W.T., Johnson, T.J. and Weise, D.R. (2013) Measurements of Reactive Trace Gases and Variable Formation Rates in Some South Carolina Biomass Burning Plumes. Atmospheric Chemistry and Physics, 13, 1141-1165.
https://doi.org/10.5194/acp-13-1141-2013
[10] Loreto, F. and Fares, S. (2013) Biogenic Volatile Organic Compounds and Their Impacts on Biosphere-Atmosphere Interactions. Developments in Environmental Science, 13, 57-75.
https://doi.org/10.1016/B978-0-08-098349-3.00004-9
[11] Penuelas, J. and Staudt, M. (2010) BVOCs and Global Change. Trends in Plant Science, 15, 133-144.
https://doi.org/10.1016/j.tplants.2009.12.005
[12] Woodroffe, J.-D., Lupton, D., Garrison, M., Nagel, E., Siirila, M. and Harvey, B. (2021) Synthesis and Fuel Properties of High-Energy Density Cyclopropanated Monoterpenes. Fuel Processing Technology, 222, Article ID: 106952.
https://doi.org/10.1016/j.fuproc.2021.106952
[13] Wagner, Z., Bendová, M., Rotrekl, J. and Orvalho, S. (2019) Densities, Vapor Pressures, and Surface Tensions of Selected Terpenes. Journal of Solution Chemistry, 48, 1147-1166.
https://doi.org/10.1007/s10953-019-00900-3
[14] Rodrigues, A., Ribeiro, C., Raposo, J., Viegas, D. and André, J. (2019) Effect of Canyons on a Fire Propagating Laterally over Slopes. Frontiers in Mechanical Engineering, 5, Article No. 41.
https://doi.org/10.3389/fmech.2019.00041
[15] Barboni, T. and Chiaramonti, N. (2010) BTEX Emissions during Prescribed Burning in Function of Combustion Stage and Distance from Flame Front. Combustion Science and Technology, 182, 1193-1200.
https://doi.org/10.1080/00102201003660199
[16] Maleknia, S., Bell, T. and Adams, M. (2009) Eucalypt Smoke and Wildfires: Temperature Dependent Emissions of Biogenic Volatile Organic Compounds. International Journal of Mass Spectrometry, 279, 126-133.
https://doi.org/10.1016/j.ijms.2008.10.027
[17] Barboni, T. (2010) Emission of Biogenic Volatile Organic Compounds Involved in Eruptive Fire: Implications for the Safety of Firefighters. International Journal of Wildland Fire, 20, 152-161.
https://doi.org/10.1071/WF08122
[18] Chetehouna, K., Courty, L., Garo, J.P., Viegas, D. and Fernandez-Pello, C.(2014) Flammability Limits of Biogenic Volatile Organic Compounds Emitted by Fire-Heated Vegetation (Rosmarinus officinalis) and Their Potential Link with Accelerating Forest Fires in Canyons: A Froude-Scaling Approach. Journal of Fire Sciences, 32, 316-327. https://doi.org/10.1177/0734904113514810
[19] Kim, Y., Lee, S., Kim, J., Kim, J. and No, K.T. (2002) Prediction of Autoignition Temperatures (AITs) for Hydrocarbons and Compounds Containing Heteroatoms by the Quantitative Structure-Property Relationship. Journal of the Chemical Society, Perkin Transactions 2, No. 12, 2087-2092.
https://doi.org/10.1039/B207203C
[20] Coudour, B., Chetehouna, K., Rudz, S., Gillard, P. and Garo, J.P. (2014) Investigation on Minimum Ignition Energy of Mixtures of α-Pinene-Benzene/Air. Journal of Hazardous Materials, 283, 507-511.
https://doi.org/10.1016/j.jhazmat.2014.09.057
[21] Mokrani, N., Fateh, T. and Courty, L. (2020) Thermal Degradation of α-Pinene and β-Pinene: An Experimental Study. Fuel, 267, Article ID: 117177.
https://doi.org/10.1016/j.fuel.2020.117177
[22] Coudour, B., Chetehouna, K., Lemee, L., Bertin, P. and Garo, J.P. (2019) Thermal Degradation of α-Pinene Using a Py-GC/MS. Journal of Thermal Analysis and Calorimetry, 137, 1315-1328.
https://doi.org/10.1007/s10973-019-08028-8
[23] Egloff, G., Herrman, M., Levinson, B. and Dull, M. (2002) Thermal Reactions of Terpene Hydrocarbons. Chemical Reviews, 14, 287-383.
https://doi.org/10.1021/cr60049a001
[24] Calfapietra, C., Fares, S., Manes, F., Morani, A., Sgrigna, G. and Loreto, F. (2013) Role of Biogenic Volatile Organic Compounds (BVOC) Emitted by Urban Trees on Ozone Concentration in Cities: A Review. Environmental pollution, 183, 71-80.
https://doi.org/10.1016/j.envpol.2013.03.012
[25] Singh, B. and Sharma, R. (2014) Plant Terpenes: Defense Responses, Phylogenetic Analysis, Regulation and Clinical Applications. 3 Biotech, 5, 129-151.
https://doi.org/10.1007/s13205-014-0220-2
[26] Iijima, Y. (2014) Recent Advances in the Application of Metabolomics to Studies of Biogenic Volatile Organic Compounds (BVOC) Produced by Plant. Metabolites, 4, 699-721.
https://doi.org/10.3390/metabo4030699
[27] Penuelas, J. and Llusia, J. (2003) BVOCs: Plant Defence against Climate Warming. Trends in Plant Science, 8, 105-109.
https://doi.org/10.1016/S1360-1385(03)00008-6
[28] Owen, S., Boissard, C. and Nicholas, H.C. (2001) Volatile Organic Compounds (VOCs) Emitted from 40 Mediterranean Plant Species. Atmospheric Environment, 35, 5393-5409.
https://doi.org/10.1016/S1352-2310(01)00302-8
[29] Madrigal, J., Della Rocca, G., Marchi, E., Michelozzi, M., Moya, B. and Danti, R. (2017) Relevance of Terpenoids on Flammability of Mediterranean Species: An experimental Approach at a Low Radiant Heat Flux. iForest - Biogeosciences and Forestry, 10, 766-775.
https://doi.org/10.3832/ifor2327-010
[30] Keeling, C. and Bohlmann, J. (2006) Genes, Enzymes and Chemicals of Terpenoid Diversity in the Constitutive and Induced Defence of Conifers Against Insects and Pathogens. New Phytologist, 170, 657-675.
https://doi.org/10.1111/j.1469-8137.2006.01716.x
[31] Wang, Q., Quan, S. and Xiao, H. (2019) Towards Efficient Terpenoid Biosynthesis: Manipulating IPP and DMAPP Supply. Bioresources and Bioprocessing, 6, Article No. 6.
https://doi.org/10.1186/s40643-019-0242-z
[32] Laothawornkitkul, J., Taylor, J., Nigel, P. and Nicholas, H.C. (2009) Biogenic Volatile Organic Compounds in the Earth System: Tansley Review. New Phytologist, 183, 27-51.
https://doi.org/10.1111/j.1469-8137.2009.02859.x
[33] Staudt, M. and Nadia, B. (2002) Light and Temperature Dependence of the Emission of Cyclic and Acyclic Monoterpenes from Holm Oak (Quercus ilex L.) Leaves. Plant, Cell & Environment, 21, 385-395.
https://doi.org/10.1046/j.1365-3040.1998.00288.x
[34] Zhao, F.-J., Shu, L.-F., Wang, Q.-H., Wang, M.-Y. and Tian, X. (2011) Emissions of Volatile Organic Compounds from Heated Needles and Twigs of Pinus pumila. Journal of Forestry Research, 22, Article No. 243.
https://doi.org/10.1007/s11676-011-0157-9
[35] Kleist, E., Mentel, T., Andrés, S., Bohne, A., Folkers, A., Kiendler-Scharr, A., Rudich, Y., Springer, M., Tillmann, R. and Wildt, J. (2012) Irreversible Impacts of Heat on the Emissions of Monoterpenes, Sesquiterpenes, Phenolic BVOC and Green Leaf Volatiles from Several Tree Species. Biogeosciences, 9, 5111-5123.
https://doi.org/10.5194/bg-9-5111-2012
[36] Wang, M. (2019) Study of Volatile Organic Compounds (VOC) in the Cloudy Atmosphere: Air/Droplet Partitioning of VOC. Doctoral Dissertation, Université Clermont Auvergne, Auvergne.
[37] Niinemets, ü., Loreto, F. and Reichstein, M. (2004) Physiological and PhysioChemical Controls on Foliar Volatile Organic Compound Emissions. Trends in Plant Science, 9, 180-186.
https://doi.org/10.1016/j.tplants.2004.02.006
[38] Copolovici, L. And Niinemets, ü. (2005) Temperature Dependencies of Henry’s Law Constants and Octanol/Water Partition Coefficients for Key Plant Volatile Monoterpenoids. Chemosphere, 61, 1390-1400.
https://doi.org/10.1016/j.chemosphere.2005.05.003
[39] Ciccioli, P., Centritto, M. and Loreto, F. (2014) Biogenic Volatile Organic Compound Emissions from Vegetation Fires. Plant, Cell & Environment, 37, 1810-1825.
https://doi.org/10.1111/pce.12336
[40] Copolovici, L. and Niinemets, ü. (2015) Temperature Dependencies of Henry’s Law Cons Tants for Different Plant Sesquiterpenes. Chemosphere, 138, 751-757.
https://doi.org/10.1016/j.chemosphere.2015.07.075
[41] Crowley, K.J. and Traynor, S.G. (1978) Ground State Sigmatropic and Electrocyclic Rearrangements in Some Monoterpenes: The Pyrolysis of α-Pinene. Tetrahedron, 34, 2783-2789.
https://doi.org/10.1016/0040-4020(78)88420-8
[42] Stolle, A., Ondruschka, B. and Findeisen, M. (2008) Mechanistic and Kinetic Insights into the Thermally Induced Rearrangement of α-Pinene. The Journal of organic chemistry, 73, 8228-8235.
https://doi.org/10.1021/jo8012995
[43] Anikeev, V. (2010) ChemInform Abstract: Thermal Transformations of Some Monoterpene Compounds in Supercritical Lower Alcohols. Flavour and Fragrance Journal, 25, 443-455.
https://doi.org/10.1002/ffj.2004
[44] Bhattacharjee, N. and Biswas, A. (2019) Pyrolysis of Orange Bagasse: Comparative study and Parametric Influence on the Product Yield and Their Characterization. Journal of Environmental Chemical Engineering, 7, Article ID: 102903.
https://doi.org/10.1016/j.jece.2019.102903
[45] Chen, C.-J., Back, M. and Back, R. (2011) The Thermal Decomposition of Methane. I. Kinetics of the Primary Decomposition to C2H6 + H2; Rate Constant for the Homogeneous Unimolecular Dissociation of Methane and Its Pressure Dependence. Canadian Journal of Chemistry, 53, 3580-3590.
https://doi.org/10.1139/v75-516
[46] Guéret, C., Daroux, M. and Billaud, F. (1997) Methane Pyrolysis: Thermodynamics. Chemical Engineering Science, 52, 815-827.
https://doi.org/10.1016/S0009-2509(96)00444-7
[47] Matheu, D., Dean, A., Grenda, J. and Green, W. (2003) Mechanism Generation with Integrated Pressure Dependence: A New Model for Methane Pyrolysis. The Journal of Physical Chemistry A, 107, 8552-8565.
https://doi.org/10.1021/jp0345957
[48] Moldoveanu, S.C. (2019) Pyrolysis of Hydrocarbons. In Pyrolysis of Organic Molecules, Elsevier Science, Amsterdam, 135-161.
https://doi.org/10.1016/B978-0-444-64000-0.00002-0
[49] Wang, C., Hao, Q., Lu, D., Jia, Q., Li, G. and Xu, B. (2008) Production of Light Aromatic Hydrocarbons from Biomass by Catalytic Pyrolysis. Chinese Journal of Catalysis, 29, 907-912.
https://doi.org/10.1016/S1872-2067(08)60073-X
[50] Holmen, A., Olsvik, O. and Rokstad, O.A. (1995) Pyrolysis of Natural Gas: Chemistry and Process Concepts. Fuel Processing Technology, 42, 249-267.
https://doi.org/10.1016/0378-3820(94)00109-7
[51] Gil-Av, E., Shabtai, J. and Steckel, F. (1960) Study of Thermal Aromatization of 1,3-Butadiene. Industrial & Engineering Chemistry, 5, 98-105.
https://doi.org/10.1021/je60005a024
[52] Amano, A. and Horie, O. (1976) Effect of Thermal Activation on the Reaction of Toluene with Hydrogen Atoms. International Journal of Chemical Kinetics, 8, 321-339.
https://doi.org/10.1002/kin.550080302
[53] Mahood, S. (2002) The Thermal Decomposition of Turpentine with Particular Reference to the Production of Toluene and Isoprene. Journal of Industrial & Engineering Chemistry, 12, 1152-1154.
https://doi.org/10.1021/ie50132a009
[54] Dagaut, P. and Cathonnet, M. (1998) The Oxidation of 1,3Butadiene: Experimental Results and Kinetic Modeling. Combustion Science and Technology, 140, 225-257.
https://doi.org/10.1080/00102209808915773