Back
 OJDM  Vol.12 No.2 , April 2022
Acute Triangulations of the Surface of Circular Cone
Abstract: In this paper, we prove that the surface of any circular cone can be triangulated into 8 non-obtuse and 20 acute triangles. Furthermore, we also show that the bounds are both the best possible.
Cite this paper: Feng, X. , Cao, P. and Chang, Z. (2022) Acute Triangulations of the Surface of Circular Cone. Open Journal of Discrete Mathematics, 12, 17-27. doi: 10.4236/ojdm.2022.122002.
References

[1]   Gardner, M. (1960) Mathematical Games: A Fifth Collection of “Brain-Teasers”. Scientific American, 202, 150-154.
https://doi.org/10.1038/scientificamerican0260-150

[2]   Gardner, M. (1960) Mathematical Games: The Games and Puzzles of Lewis Carroll, and the Answers to February’s Problems. Scientific American, 202, 172-182.
https://doi.org/10.1038/scientificamerican0360-172

[3]   Gardner, M. (1995) New Mathematical Diversions. Mathematical Association of America, Washington DC.

[4]   Burago, Y.D. and Zalgaller, V.A. (1960) Polyhedral Embedding of a Net (Russian). Vestnik Leningrad University, 15, 66-80.

[5]   Cassidy, C. and Lord, G. (1980/1981) A Square Acutely Triangulated. Journal of Recreational Mathematic, 13, 263-268.

[6]   Maehara, H. (2001) On Acute Triangulations of Quadrilaterals. Japanese Conference on Discrete and Computational Geometry 2000, Vol. 2098, Tokyo, 22-25 November 2000, 237-354.
https://doi.org/10.1007/3-540-47738-1_22

[7]   Cavicchioli, M. (2012) Acute Triangulations of Convex Quadrilaterals. Discrete Applied Mathematics, 160, 1253-1256.
https://doi.org/10.1016/j.dam.2012.01.004

[8]   Yuan, L. (2010) Acute Triangulations of Trapezoids. Discrete Applied Mathematics, 158, 1121-1125.
https://doi.org/10.1016/j.dam.2010.02.008

[9]   Yuan, L. (2010) Acute Triangulations of Pentagons. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 53, 393-410.

[10]   Maehara, H. (2002) Acute Triangulations of Polygons. European Journal of Combinatorics, 23, 45-55.
https://doi.org/10.1006/eujc.2001.0531

[11]   Yuan, L. (2005) Acute Triangulations of Polygons. Discrete & Computational Geometry, 34, 697-706.
https://doi.org/10.1007/s00454-005-1188-9

[12]   Zamfirescu, C.T. (2013) Improved Bounds for Acute Triangulations of Convex Polygons. Utilitas Mathematica, 91, 71-79.

[13]   Hangan, T., Itoh, J. and Zamfirescu, T. (2000) Acute Triangulations. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 43, 279-285.

[14]   Itoh, J. and Zamfirescu, T. (2007) Acute Triangulations of the Regular Dodecahedral Surface. European Journal of Combinatorics, 28, 1072-1086.
https://doi.org/10.1016/j.ejc.2006.04.008

[15]   Itoh, J. and Zamfirescu, T. (2004) Acute Triangulations of the Regular Icosahedral Surface. Discrete & Computational Geometry, 31, 197-206.
https://doi.org/10.1007/s00454-003-0805-8

[16]   Jia, L., Yuan, L., Zamfirescu, C.T. and Zamfirescu, T.I. (2013) Balanced Triangulations. Discrete Mathematics, 313, 2178-2191.
https://doi.org/10.1016/j.disc.2013.05.017

[17]   Feng, X. and Yuan, L. (2011) Acute Triangulations of the Cuboctahedral Surface. International Conference on Computational Geometry, Graphs and Applications, Vol. 7033, Dalian, 3-6 November 2010, 73-83.
https://doi.org/10.1007/978-3-642-24983-9_8

[18]   Feng, X., Yuan, L. and Zamrescu, T. (2015) Acute Triangulations of Archimedean Surfaces. The Truncated Tetrahedron. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 58, 271-282.

[19]   Yuan, L. and Zamfirescu, T. (2007) Acute Triangulations of Flat Möbius strips. Discrete & Computational Geometry, 37, 671-676.
https://doi.org/10.1007/s00454-007-1312-0

[20]   Itoh, J. and Yuan, L. (2009) Acute Triangulations of Flat Tori. European Journal of Combinatorics, 30, 1-4.
https://doi.org/10.1016/j.ejc.2008.03.005

[21]   Zamfirescu, C.T. (2004) Acute Triangulations of the Double Triangle. Bulletin Mathématique de la Société des Sciences Mathématiques de Roumanie, 47, 189-193.

[22]   Yuan, L. and Zamfirescu, C.T. (2007) Acute Triangulations of Double Quadrilaterals. Bollettino dell’Unione Matematica Italiana, 10-B, 933-938.

[23]   Yuan, L. and Zamfirescu, T. (2012) Acute Triangulations of Double Planar Convex Bodies. Publicationes Mathematicae Debrecen, 81, 121-126.

[24]   Bau, S. and Gagola III, S.M. (2018) Decomposition of Closed Orientable Geometric Surfaces into Acute Geodesic Triangles. Archiv der Mathematik, 110, 81-89.
https://doi.org/10.1007/s00013-017-1097-1

[25]   Saraf, S. (2009) Acute and Nonobtuse Triangulations of Polyhedral Surfaces. European Journal of Combinatorics, 30, 833-840.
https://doi.org/10.1016/j.ejc.2008.08.004

[26]   Maehara, H. (2011) On a Proper Acute Triangulation of a Polyhedral Surface. Discrete Mathematics, 311, 1903-1909.
https://doi.org/10.1016/j.disc.2011.05.012

 
 
Top