Back
 AAST  Vol.7 No.1 , March 2022
Validation of Novel Model for Identification of Thermal Conditions in the Low Corona
Abstract: The electron density and temperature key properties of the neutral-magnetized plasma in the solar corona, which are predicted with a novel model, provide an interesting window along the whole solar cycle. In this work, we test the quantitative validity of the model and prove that the Coronal Density and Temperature (CODET) is reliable. Furthermore, this work contrasts the CODET model results with alternative observational remote and in-situ datasets during the simplest conditions of the quiescent corona near the solar minimum. This successful outcome/validation of the CODET model allowed a good qualitative density and temperature retrieval in the solar corona covering a large portion of time interval from solar cycles 23 and 24.
Cite this paper: Berdichevsky, D. , Rodríguez Gómez, J. , Vieira, L. and Dal Lago, A. (2022) Validation of Novel Model for Identification of Thermal Conditions in the Low Corona. Advances in Aerospace Science and Technology, 7, 52-84. doi: 10.4236/aast.2022.71004.
References

[1]   Judge, P.G. (1998) Spectral Lines for Polarization Measurements of the Coronal Magnetic Field. I. Theoretical Intensities. The Astrophysical Journal, 500, 1009-1022.
https://doi.org/10.1086/305775

[2]   Gómez, J.M.R., Vieira, L., dal Lago, A. and Palacios, J. (2018) Coronal Electron Density, Temperature and Solar Spectral Irradiance during Solar Cycles 23 and 24. The Astrophysical Journal, 852, Article No. 137, 11p.
https://doi.org/10.3847/1538-4357/aa9f1c

[3]   Morgan, H. and Taroyan, Y. (2017) Global Conditions in the Solar Corona from 2010 to 2017. Science Advances, 3, Article ID: e1602056.
https://doi.org/10.1126/sciadv.1602056

[4]   Gómez, J.M.R. (2017) Evolution of the Electron Density, Temperature Distribution in the Solar Corona during Solar Cycles 23 and 24, Ph.D. Thesis, Instituto Nacional de Pesquisas Espaciais (INPE).
http://urlib.net/8JMKD3MGP3W34P/3NCJQLB

[5]   Aschwanden, M. (2019) New Millennium Solar Physics. Astrophysics and Space Science Library, Vol. 458, Springer, Cham.
https://doi.org/10.1007/978-3-030-13956-8

[6]   Scherrer, P.H., Bogart, R.S., Bush, R.I., Hoeksema, J.T., Kosovichev, A.G., Schou, J., Rosenberg, W., Springer, L., Tarbell, T.D., Title, A., Wolfson, C.J., Zayer, I. and The MDI/SOHO Engineering Team (1995) The Solar Oscillations Investigation-Michelson Doppler Imager. Solar Physics, 162, 129-188.
https://doi.org/10.1007/BF00733429

[7]   Scherrer, PH, Schou, J., Bush, R.I., Kosovichev, A.G., Bogart, R.S., Hoeksema, J.T., Liu, Y., Duvall, , T.L.J., Zhao, J., Title, A.M., Schrijver, C.J., Tarbell, T.D. and Tomczyk, S. (2012) The Helioseismic and Magnetic Imager (HMI) Investigation for the Solar Dynamics Observatory (SDO). Solar Physics, 275, 207-227.
https://doi.org/10.1007/s11207-011-9834-2

[8]   Schrijver, C.J. (2001) Simulations of the Photospheric Magnetic Activity and Outer Atmospheric Radiative Losses of Cool Stars Based on Characteristics of the Solar Magnetic Field. The Astrophysical Journal, 547, Article No. 475.
https://doi.org/10.1086/318333

[9]   Schrijver, C.J. and De Rosa, M.L. (2003) Photospheric and Heliospheric Magnetic Fields. Solar Physics, 212, 165-200.
https://doi.org/10.1023/A:1022908504100

[10]   Del Zanna, G., Dere, K.P., Young, P.R., Landi, E. and Mason, H.E. (2015) CHIANTI—An Atomic Database for Emission Lines. Version 8. Astronomy & Astrophysics, 582, Article No. A56.
https://doi.org/10.1051/0004-6361/201526827

[11]   Charbonneau, P. (1995) Genetic Algorithms in Astronomy and Astrophysics. The Astrophysical Journal Supplement, 101, 309-334.
https://doi.org/10.1086/192242

[12]   Mathews, J. and Walker, R.L. (1970) Mathematical Methods of Physics. 2nd Edition, Addison-Wesley World Student Series, Benjamin, Menlo Park.

[13]   Robbrecht, E., Wang, Y.-M., Sheeley, N.R. and Rich, N.B. (2010) On the “Extended” Solar Cycle in Coronal Emission. The Astrophysical Journal, 716, 693-700.
https://doi.org/10.1088/0004-637X/716/1/693

[14]   Yokoyama, T. and Shibata, K. (2001) Magnetohydrodynamic Simulation of Solar Flare with Chromospheric Evaporation Effect Based on the Magnetic Reconnection model. The Astrophysical Journal, 569, 1160-1174.
https://doi.org/10.1086/319440

[15]   Golub, L. (1983) Empirical Scaling Laws for Coronal Heating. Solar and Stellar Magnetic Fields, Origins and Coronal Effects: Proceedings of the Symposium, Zürich, 2-6 August 1982, 345-361.

[16]   Emslie, A.G. (1985) The Structure of High-Temperature Solar Flare Plasma in Non-Thermal Models. Solar Physics, 98, 281-291.
https://doi.org/10.1007/BF00152461

[17]   Altschuler, M.D. and Newkirk, G. (1969) Magnetic Fields and the Structure of the Solar Corona. I: Methods of Calculating Coronal Fields. Solar Physics, 9, 131-149.
https://doi.org/10.1007/BF00145734

[18]   Osherovich, V.A., Gliner, E.B. and Tzur, I. (1985) Theoretical Model of the Solar Corona during Sunspot Minimum, II-Dynamic Approximation, Part 1, The Astrophysical Journal, 288, 396-400.
https://doi.org/10.1086/162803

[19]   Zirin, H. (1966) The Solar Atmosphere. Translated from English into Russian, Mir, Moskva, 584 p.

[20]   Dyson, F.W., Eddington, A.S. and Davidson, C. (1920) A Determination of the Deflection of Light by the Sun’s Gravitational Field, from Observations Made at the Total Eclipse of May 29, 1919. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 220, 291-333.
https://doi.org/10.1098/rsta.1920.0009

[21]   Delaboudinière, J.-P., Artzner, G.E., Brunaud, J., Gabriel, A.H., Hochedez, J.F. Millier, F., Song, X.Y., Au, B., Dere, K.P., Howard, R.A., Kreplin, R., Michels, D.J., Moses, J.D., Defise, J.M., Jamar, C., Rochus, P., Chauvineau, J.P., Marioge, J.P., Catura, R.C. and Lemen, J.R. (1995) EIT: Extreme-Ultraviolet Imaging Telescope for the SOHO Mission. Solar Physics, 162, 291-312.
https://doi.org/10.1007/BF00733432

[22]   Ogilvie, K.W., Chornay, D.J., Fitzenreiter, R.J., Hunsaker, E., Keller, J., Lobell, J., Miller, G., Scudder, J.D., Sittler, E.C.J., Torbert, R.B., Bodet, D., Needell, U., Lazarus, A.J., Steinberg, J.T., Tapan, J.H., Mavretic, A. and Gergin, E. (1995) SWE, a Comprehensive Plasma Instrument for the Wind Spacecraft, Spa. Space Science Reviews, 71, 55-77.
https://doi.org/10.1007/BF00751326

[23]   Lepping, R.P., Acuña, M.H., Burlaga, L.F., Farrell, W.M., Slavin, L.A., Schatten, K.H., Mariani, F., Ness, N.F., Neubauer, F.M., Whang, Y.C., Byrnes, J.B., Kennon, R.S., Panetta, P.V., Scheifele, J. and Worley, E.M. (1995) The Wind Magnetic Field Investigation, Spa. Space Science Reviews, 71, 207-229.
https://doi.org/10.1007/BF00751330

[24]   Michels, D.J. and the EIT and LASCO Teams (1998) Organization of the Corona at Solar Minimum. Proceedings of the 3rd SOLTIP Symposium, Beijing, 14-18 October 1996.

[25]   Voulgaris, A., Athanasiadis, T., Seiradakis, J.H. and Pasachoff, J.M. (2010) A Comparison of the Red and Green Coronal Line Intensities at the 29 March 2006 and the 1 August 2008 Total Solar Eclipses: Considerations of the Temperature of the Solar Corona. Solar Physics, 264, 45-55.
https://doi.org/10.1007/s11207-010-9575-7

[26]   Habbal, S.R., Druckmüller, M., Morgan, H., Daw, A., Johnson, J., Ding, A., Arndt, M., Esser, R., Rusin, V. and Scholl, I. (2010) Mapping the distribution of Electron Temperature and Fe Charge States in the Corona with Total Eclipse Observations. The Astrophysical Journal, 708, 1650-1662.
https://doi.org/10.1088/0004-637X/708/2/1650

[27]   Daw, A., Habbal, S.R., Morgan, H., Druckmüller, M., Ding, A., Johnson, J. and Rusin, V. (2009) Eclipse Observations of the Fe XI 789.2 nm Line. Bulletin of the American Astronomical Society, 41, 323.

[28]   Sheeley, N.R.J., Wang, Y.-M., Hawley, S.H., Brueckner, G.E., Dere, K.P., Howard, R.A., Koomen, M.A., Korendyke, C.M., Michels, D.M., Paswaters, S.E., Socker, D.G., Cyr, O.C.S., Wang, D., Lamy, P.L., Llebaria, A., Schwenn, R., Simnett, G.M., Plunkett, S. and Biesecker, D.A. (1997) Measurements of Flow Speeds in the Corona between 2 and 30 R. The Astrophysical Journal, 484, 472-478.
https://doi.org/10.1086/304338

[29]   Dere, K.P., Howard, R.A. and Brueckner, G.E. (2000) Coronal Mass Ejections and the Solar Wind: New Results from LASCO. Advances in Space Research, 25, 1837-1842.
https://doi.org/10.1016/S0273-1177(99)00594-3

[30]   Vasquez, B.J., Farrugia, C.J., Simmunac, K.D.C., Galvin, A.B. and Berdichevsky, D.B. (2017) Concerning the Helium-to-Hydrogen Number Density Ratio in Very Slow Ejecta and Winds near Solar Minimum. Journal of Geophysical Research: Space Physics, 122, 1487-1512.
https://doi.org/10.1002/2016JA023636

[31]   Viall, N.W. and Vourlidas, A. (2015) Periodic Density Structures and the Origin of the Slow Solar Wind. The Astrophysical Journal, 807, Article No. 176.
https://doi.org/10.1088/0004-637X/807/2/176

[32]   Sanchez-Diaz, E., Rouillard, A.P., Lavraud, B., Segura, K., Tao, C., Pinto, R., Sheeley, N.R.J. and Plotnikov, I. (2016) The Very Slow Solar Wind: Properties, Origin and Variability. Journal of Geophysical Research: Space Physics, 121, 2830-2841.
https://doi.org/10.1002/2016JA022433

[33]   Priest, E. (2014) Magnetohydrodynamics of the Sun. Cambridge University Press, Cambridge, UK.

[34]   Schwenn, R. and Marsch, E. (1990) Physics of the Inner Heliosphere. Vol. I, Springer Verlag, Berlin.
https://doi.org/10.1007/978-3-642-75361-9

[35]   De Pontieu, B., McIntosh, S.W., Hansteen, V.H. and Schrijver, C.J. (2009) Observing the Roots of Solar Coronal Heating-In the Chromospheres. The Astrophysical Journal, 701, L1.
https://doi.org/10.1088/0004-637X/701/1/L1

[36]   De Pontieu, B, McIntosh, S.W., Carlsson, M., Hansteen, V.H., Tarbell, T.D., Boerner, P., Martinez-Zycora, J., Schreiver, C.J. and Title, A.M. (2011) The Origins of Hot Plasma in the Solar Corona. Science, 331, 55-58.
https://doi.org/10.1126/science.1197738

[37]   Gomez, D.O., Bejarano, C. and Mininni, P.D. (2014) Kelvin-Helmholtz versus Hall Magneto Shear Instability in Astrophysical Flows. Physical Review E, 89, Article ID: 053105.
https://doi.org/10.1103/PhysRevE.89.053105

[38]   Webb, D.F., Cliver, E.W., Gopalswamy, N., Hudson, H.S. and Cyr, O.C.S. (1998) The Solar Origin of the January 1997 Coronal Mass Ejection, Magnetic Cloud and Geomagnetic Storm. Geophysical Research Letters, 25, 2469-2472.
https://doi.org/10.1029/98GL00493

[39]   Robbrecht, E., Patsourakos, S. and Vourlidas, A. (2009) No Trace Left Behind: Stereo Observations of a CME without Low Coronal Signatures. Astrophysical Journal, 701, Article No. 283.
https://doi.org/10.1088/0004-637X/701/1/283

[40]   Hudson, H.S. and Li, Y. (2010) Flare and CME Properties and Rates at Sunspot Minimum. In: Cranmer, S.R., Hoeksema, J.T. and Kohl, J.L., Eds., SOHO-23: Understanding a Peculiar Solar Minimum, ASP Conference Series, Vol. 428, Astronomical Society of the Pacific, San Francisco, 153-160.

[41]   Lepping, R.P., Wu, C.-C., Berdichevsky, D.B. and Szabo, A. (2011) Magnetic Clouds at/near 2007-2009 Solar Minimum: Frequency of Occurrence and Some Unusual Properties. Solar Physics, 274, 345-360.
https://doi.org/10.1007/s11207-010-9646-9

[42]   Steinhilfber, F. (2010) Total Solar Irradiance since 1996: Is There a Long-Term Variation Unrelated to Solar Surface Magnetic Phenomena. Astronomy & Astrophysics, 523, Article No. A39.
https://doi.org/10.1051/0004-6361/200811446

[43]   Richardson, I.G. and Cane, H. (2012) Near-Earth Solar Wind Flows and Related Geomagnetic Activity during More than Four Solar Cycles. Journal of Space Weather and Space Climate, 2, Article No. A02.
https://doi.org/10.1051/swsc/2012003

[44]   Schrijver, C.J., Livingston, W.C., Woods, T.N. and Mewaldt, R.A. (2011) The Minimal Solar Activity in 2008-2009 and Its Implications for Long-Term Climate Modeling. Geophysical Research Letters, 38, Article ID: L06701.
https://doi.org/10.1029/2011GL046658

[45]   De Toma, G., Gibson, S.E., Emery, B.A. and Arge, C.N. (2010) The Minimum between Cycle 23 and 24: Is Sunspot Number the Whole Story? In: Cranmer, S.R., Hoeksema, J.T. and Kohl, J.L., Eds., SOHO-23: Understanding a Peculiar Solar Minimum, ASP Conference Series, Vol. 428, Astronomical Society of the Pacific, San Francisco, 217-222.

[46]   Berdichevsky, D., Gómez, J.M.R., Viera, L. and Dal Lago, A. (2020) Thermodynamics Interpretation of Electron Density and Temperature Description in the Solar Corona. arXiv:2005.07929.
http://arxiv.org/abs/2005.07929

[47]   Nikolsky, G.M., Gulyaev, R.A. and Nikolskaya, K.I. (1971) Spectrophotometry of the Corona and a Quiescent Prominence Based on Observations of the Total Solar Eclipse of 7 March, 1970 in Mexico. Solar Physics, 221, 332-350.
https://doi.org/10.1007/BF00154285

[48]   Glockler, G. and Geiss, J. (2007) The Composition of the Solar Wind in Polar Coronal Holes. Space Science Reviews, 130, 139-152.
https://doi.org/10.1007/s11214-007-9189-z

[49]   Habbal, S.R., Scholl, I.F. and McIntosh, S.W. (2008) Impact of Active Regions on Coronal Hole Outflows. The Astrophysical Journal Letters, 683, Article No. L75.
https://doi.org/10.1086/591315

[50]   Mierla, M., Schwenn, R., Teriaca, L., Stenborg, G. and Podlipnik, B. (2008) Analysis of the Fe X and Fe XIV Line Width in the Solar Corona Using LASCO-C1 Spectral Data. Astronomy & Astrophysics, 480, 509-514.
https://doi.org/10.1051/0004-6361:20078329

[51]   Berdichevsky, D.B. and Schefers, K. (2015) On the Thermodynamics and Other Constitutive Properties of a Class of Strongly Magnetized Matter Observed in Astrophysics. The Astrophysical Journal, 805, Article No. 70.
https://doi.org/10.1088/0004-637X/805/1/70

[52]   Wu, C.-C. and Lepping, R.P. (2015) Comparison of Characteristics of Magnetic Clouds and Magnetic Cloud-Like Structures during 1995-2012. Solar Physics, 290, 1243-1269.
https://doi.org/10.1007/s11207-015-0656-5

[53]   Vernazza, J.E., Avrett, E.H. and Loeser, R. (1981) Structure of the Solar Chromosphere. III. Models of the EUV Brightness Components of the Quiet Sun. Astrophysical Journal, 45, 635-725.
https://doi.org/10.1086/190731

[54]   Berdichevsky, D., Geiss, J., Gloeckler, G. and Mall, U. (1997) Excess Heating of 4He2+ and O6+ relative to H+ Downstream of Interplanetary Shocks. Journal of Geophysical Research: Space Physics, 102, 2623-2635.
https://doi.org/10.1029/96JA02541

 
 
Top