ACES  Vol.12 No.2 , April 2022
Focused-Ion-Beam Induced Paramagnetic Defects in FAMn:PbI3 Perovskite Films
Abstract: FAMn:PbI3 perovskite films were synthesized and probed mainly through electron spin resonance (ESR) spectroscopy. FAMn:PbI3 with low (~1%) Mn concentration showed a hyperfine sextet line originated from Mn++ ions. FAMn:PbI3 with high (10%) Mn concentration showed broad resonance (~500 G peak-to-peak linewidth). However, after bombardment of FAMn:PbI3 with high Mn concentration by focused ion beams (FIB), a sharp ESR peak appeared. The peak-to-peak linewidth (ΔHpp) was ~8 G regardless of the temperature. The FIB-induced defect showed Curie behavior at low temperatures (5 K - 50 K), which indicates the presence of localized electrons at the defect sites at low temperatures. The g-value increased from g = 2.0002 to 2.0016 as the temperature increased from 5 K to 50 K. Together with the ongoing search for electron spin echo (ESE), this could potentially provide a platform for realizing magnetic bits, information storage, and increased manipulation speed.
Cite this paper: Jeon, N. , Seo, J. , Kim, Y. , Lee, J. , Hong, S. , Kim, S. and Lee, J. (2022) Focused-Ion-Beam Induced Paramagnetic Defects in FAMn:PbI3 Perovskite Films. Advances in Chemical Engineering and Science, 12, 87-95. doi: 10.4236/aces.2022.122007.

[1]   Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J. and Seok, S.I. (2015) Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature, 517, 476-480.

[2]   Yang, W.S., Noh, J.H., Nam, J.J., Kim, Y.C., Ryu, S., Seo, J. and Seok, S.I. (2015) High-Performance Photovoltaic Perovskite Layers Fabricated through Intramolecular Exchange. Science, 348, 1234-1237.

[3]   Han, Q., Bae, S.-H., Sun, P., Hsieh, Y.-T., Yang, Y., Rim, Y.S., Zhao, H., Chen, Q., Shi, W., Li, G. and Yang, Y. (2016) Single Crystal Formamidinium Lead Iodide (FAPbI3): Insight into the Structural, Optical, and Electrical Properties. Advanced Materials, 28, 2253-2258.

[4]   Chen, Z., Zhang, H., Yao, F., Tao, C., Fang, G. and Li, G. (2020) Room Temperature Formation of Semiconductor Grade α-FAPbI3 Films for Efficient Perovskite Solar Cells. Cell Reports Physical Science, 1, Article ID: 100205.

[5]   Tan, S., Yavuz, I., Weber, M.H., Huang, T., Chen, C.-H., Wang, R., Wang, H.-C., Ko, J.H., Nuryyeva, S., Xue, J., Zhao, Y., Wei, K.-H., Lee, J.-W. and Yang, Y. (2020) Shallow Iodine Defects Accelerate the Degradation of α-Phase Formamidinium Perovskite. Joule, 4, 2426-2442.

[6]   Xia, W., Pei, Z., Leng, K. and Zhu, X. (2020) Research Progress in Rare Earth-Doped Perovskite Manganite Oxide Nanostructures. Nanoscale Research Letters, 15, Article No. 9.

[7]   Náfrádi, B., Szirmai, P., Spina, M., Lee, H., Yazyev, O.V., Arakcheeva, A., Chernyshow, D., Gibert, M., Forró, L. and Horváth, E. (2016) Optically Switched Magnetism in Photovoltaic Perovskite CH3NH3(Mn:Pb)I3. Nature Communications, 7, Article No. 13406.

[8]   Achermann, M., Hollingsworth, J.A. and Klimov, V.I. (2003) Multiexcitons Confined within a Subexcitonic Volume: Spectroscopic and Dynamical Signatures of Neutral and Charged Biexcitons in Ultrasmall Semiconductor Nanocrystals. Physical Review B, 68, Article ID: 245302.

[9]   Dey, A. and Yarlagadda, S. (2018) Temperature Dependence of Long Coherence Times of Oxide Charge Qubits. Scientific Reports, 8, Article No. 3487.

[10]   Jeon, N.J., Yang, T.-Y., Park, H.H., Seo, J., Nam, D.Y., Jeong, D., Hong, S., Kim, S.H., Cho, J.M., Jang, J.J. and Lee, J.-K. (2019) Thermally Activated, Light-Induced Electron-Spin-Resonance Spin Density Reflected by Photocurrents in a Perovskite Solar Cell. Applied Physics Letters, 114, Article ID: 013903.

[11]   Qiao, L., Sun, X. and Long, R. (2019) Mixed Cs and FA Cations Slow Electron-Hole Recombination in FAPbI3 Perovskites by Time-Domain ab Initio Study: Lattice Contraction versus Octahedral Tilting. The Journal of Physical Chemistry Letters, 10, 672-678.

[12]   Palei, M., Motapothula, M., Ray, A., Abdelhady, A.L., Lanzano, L., Prato, M., Panda, J.K., et al. (2020) Photoluminescence Enhancement and High Accuracy Patterning of Lead Halide Perovskite Single Crystals by MeV Ion Beam Irradiation. Journal of Materials Chemistry C, 8, 9923-9930.

[13]   D’Innocenzo, V., Grancini, G., Alcocer, M.J.P., Kandada, A.R.S., Stranks, S.D., Lee, M.M., Lanzani, G., Snaith, H.J. and Petrozza, A. (2014) Excitons versus Free Charges in Organo-Lead Tri-Halide Perovskites. Nature Communications, 5, Article No. 3586.

[14]   Saba, M., Cadelano, M., Marongiu, D., Chen, F., Sarritzu, V., Sestu, N., Figus, C., Aresti, M., Piras, R., Lehmann, A.G., Cannas, C., Musinu, A., Quochi, F., Mura, A. and Bongiovanni, G. (2014) Correlated Electron-Hole Plasma in Organometal Perovskites. Nature Communications, 5, Article No. 5049.

[15]   Sestu, N., Cadelano, M., Sarritzu, V., Chen, F., Marongiu, D., Piras, R., Mainas, M., Quochi, F., Saba, M., Mura, A. and Bongiovanni, G. (2015) Absorption F-Sum Rule for the Exciton Binding Energy in Methylammonium Lead Halide Perovskites. The Journal of Physical Chemistry Letters, 6, 4566-4572.

[16]   Yang, Y., Yang, M., Li, Z., Crisp, R., Zhu, K. and Beard, M.C. (2015) Comparison of Recombination Dynamics in CH3NH3PbBr3 and CH3NH3PbBr3 Perovskite Films: Influence of Exciton Binding Energy. The Journal of Physical Chemistry Letters, 6, 4688-4692.

[17]   Yang, Y., Yan, Y., Yang, M.J., Choi, S., Zhu, K., Luther, J.M. and Beard, M.C. (2015) Low Surface Recombination Velocity in Solution-Grown CH3NH3PbBr3 Perovskite Single Crystal. Nature Communications, 6, Article No. 7961.

[18]   Yang, Y., Yang, M., Zhu, K., Johnson, J.C., Berry, J.J., van de Lagemaat, J. and Beard, M.C. (2016) Large Polarization-Dependent Exciton Optical Stark Effect in Lead Iodide Perovskites. Nature Communications, 7, Article No. 12613.

[19]   Jakes, P. and Erdem, E. (2011) Finite Size Effects in ZnO Nanoparticles: An Electron Paramagnetic Resonance (EPR) Analysis. Physica Status Solidi—Rapid Research Letters, 5, 56-58.

[20]   Cho, J.M., Seo, J.M., Lee, J.-K., Zhang, H. and Lamb, R. (2009) Electronic Properties of Oxygen Vacancies in Titania Nanotubes. Physica B: Condensed Matter, 404, 127-130.