[1] IPCC (2018) Global Warming of 1.5 ˚C. An IPCC Special Report on the Impacts of Global Warming of 1.5 ˚C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change.
https://www.ipcc.ch/sr15
[2] Reddersen, J. (2001) SRC-Willow (Salix viminalis) as a Resource for Flower-Visiting Insects. Biomass and Bioenergy, 20, 171-179.
https://doi.org/10.1016/S0961-9534(00)00082-9
[3] Haß, A., Brauner, O. and Schulz, U. (2012) Diversity, Distribution and Abundance of Honeybees (Apis mellifera) and Wild Bees (Apidae) on a Willow Short-Rotation Coppice. Mitteilungen der Deutschen Gesellschaft für Allgemeine und Angewandte Entomologie, 18, 147-151.
https://www.jugend-zukunft-vielfalt.de/media/191012011105n3fq.pdf
[4] Cunningham, M.D., Bishop, J.D., McKay, H.V. and Sage, R.B. (2004) ARBRE Monitoring-Ecology of Short Rotation Coppice.
https://www.osti.gov/etdeweb/servlets/purl/20496469
[5] Rowe, R.L., Hanley, M.E., Goulson, D., Clarke, D.J., Doncaster, C.P. and Taylor, G. (2011) Potential Benefits of Commercial Willow Short Rotation Coppice (SRC) for Farm-Scale Plant and Invertebrate Communities in the Agri-Environment. Biomass and Bioenergy, 35, 325-336.
https://doi.org/10.1016/j.biombioe.2010.08.046
[6] Sage, R.B. and Tucker, K. (1998) Ecological Assessment of Short Rotation Coppice: Report and Appendices.
[7] Rowe, R.L., Goulson, D., Doncaster, C.P., Clarke, D.J., Taylor, G. and Hanley, M.E. (2013) Evaluating Ecosystem Processes in Willow Short Rotation Coppice Bioenergy Plantations. GCB Bioenergy, 5, 257-266.
https://doi.org/10.1111/gcbb.12040
[8] Verheyen, K., Buggenhout, M., Vangansbeke, P., De Dobbelaere, A., Verdonckt, P. and Bonte, D. (2014) Potential of Short Rotation Coppice Plantations to Reinforce Functional Biodiversity in Agricultural Landscapes. Biomass and Bioenergy, 67, 435-442.
https://doi.org/10.1016/j.biombioe.2014.05.021
[9] Haughton, A.J., Bohan, D.A., Clark, S.J., Mallott, M.D., Mallott, V., Sage, R. and Karp, A. (2016) Dedicated Biomass Crops Can Enhance Biodiversity in the Arable Landscape. GCB Bioenergy, 8, 1071-1081.
https://doi.org/10.1111/gcbb.12312
[10] Defra (2004) Growing Short Rotation Coppice. Best Practice Guidelines for Applicants to Defra’s Energy Crops Scheme. Department for Environment, Food and Rural Affairs, London.
https://www.forestresearch.gov.uk/documents/2056/Growing_Short_Rotation_Coppice_tcm6_2004.pdf
[11] Environment Agency (2015) Energy Crops and Floodplain Flows. Bristol.
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/
480799/Energy_crops_and_floodplain_flows_report.pdf
[12] Williams, M.A. and Feest, A. (2019) The Effect of Miscanthus Cultivation on the Biodiversity of Ground Beetles (Coleoptera: Carabidae), Spiders and Harvestmen (Arachnida: Araneae and Opiliones). Agricultural Sciences, 10, 903-917.
https://doi.org/10.4236/as.2019.107069
[13] Feest, A., Aldred, T.D. and Jedamzik, K. (2010) Biodiversity Quality: A Paradigm for Biodiversity. Ecological Indicators, 10, 1077-1082.
https://doi.org/10.1016/j.ecolind.2010.04.002
[14] Haughton, A.J., Bond, A.J., Lovett, A.A., Dockerty, T., Sünnenberg, G., Clark, S.J., Bohan, D.A., Sage, R.B., Mallott, M.D., Mallott, V.E., Cunningham, M.D., Riche, A.B., Shield, I.F., Finch, J.W., Turner, M.M. and Karp, A. (2009) A Novel, Integrated Approach to Assessing Social, Economic and Environmental Implications of Changing Rural Land-Use: A Case Study of Perennial Biomass Crops. Journal of Applied Ecology, 46, 315-322.
https://doi.org/10.1111/j.1365-2664.2009.01623.x
[15] Bilton, D.T. (1996) Myriapods, Isopods and Molluscs—Useful for Environmental Assessment? In: Eyre, M.D., Ed., Environmental Monitoring, Surveillance and Conservation Using Invertebrates, EMS Publications, Newcastle upon Tyne, 18-21.
[16] Feest, A. (2006) Establishing Baseline Indices for the Quality of the Biodiversity of Restored Habitats Using a Standardized Sampling Process. Restoration Ecology, 14, 112-122.
https://doi.org/10.1111/j.1526-100X.2006.00112.x
[17] Luff, M.L. (2007) The Carabidae (Ground Beetles) of Britain and Ireland. Handbooks for the Identification of British Insects, Vol. 6, Part 2, 2nd Edition, Royal Entomological Society, St Albans.
[18] Roberts, M.J. (1993) The Spiders of Great Britain and Ireland (Compact Edition). Harley Books, Colchester.
[19] Hillyard, P.D. (2005) Harvestmen. Synopses of the British Fauna (New Series) No. 4, 3rd Edition, Field Studies Council, Shrewsbury.
[20] Vanbeveren, S.P.P. and Ceulemans, R. (2019) Biodiversity in Short-Rotation Coppice. Renewable and Sustainable Energy Reviews, 111, 34-43.
https://doi.org/10.1016/j.rser.2019.05.012
[21] Jarosik, V. (1989) Mass vs Length Relationship for Carabid Beetles (Col., Carabidae). Pedobiologia (Jena), 33, 87-90.
[22] Lang, A., Krooβ, S. and Stumpf, H. (1997) Mass-Length Relationships of Epigeal Arthropod Predators in Arable Land (Araneae, Chilopoda, Coleoptera). Pedobiologia (Jena), 41, 329-333.
[23] Henschel, J., Mahsberg, D. and Stumpf, H. (1996) Mass-Length Relationships of Spiders and Harvestmen (Araneae and Opiliones). Proceedings of the 13th Congress of Arachnology, Geneva, 3-8 September 1995, 265-268.
[24] Real, R. (1999) Tables of Significant Values of Jaccard’s Index of Similarity. Miscellania Zoologica, 22, 29-40.
https://core.ac.uk/download/pdf/39078528.pdf
[25] Luff, M.L. (1998) Provisional Atlas of the Ground Beetles (Coleoptera, Carabidae) of Britain. Biological Records Centre, Huntingdon.
[26] Brose, U. (2003) Island Biogeography of Temporary Wetland Carabid Beetle Communities. Journal of Biogeography, 30, 879-888.
https://doi.org/10.1046/j.1365-2699.2003.00893.x
[27] Murdoch, W.W. (1967) Life History Patterns of Some British Carabidae (Coleoptera) and Their Ecological Significance. Oikos, 18, 25.
https://doi.org/10.2307/3564631
[28] Niemela, J., Langor, D. and Spence, J.R. (1993) Effects of Clear-Cut Harvesting on Boreal Ground-Beetle Assemblages (Coleoptera: Carabidae) in Western Canada. Conservation Biology, 7, 551-561.
https://doi.org/10.1046/j.1523-1739.1993.07030551.x
[29] Karen, M., O’Halloran, J., Breen, J., Giller, P., Pithon, J. and Kelly, T. (2008) Distribution and Composition of Carabid Beetle (Coleoptera, Carabidae) Communities across the Plantation Forest Cycle—Implications for Management. Forest Ecology and Management, 256, 624-632.
https://doi.org/10.1016/j.foreco.2008.05.005
[30] Björkman, C., Bommarco, R., Eklund, K. and Höglund, S. (2004) Harvesting Disrupts Biological Control of Herbivores in a Short-Rotation Coppice System. Ecological Applications, 14, 1624-1633.
https://doi.org/10.1890/03-5341
[31] Müller-Kroehling, S., Hohmann, G., Helbig, C., Liesebach, M., Lübke-Al Hussein, M., Al Hussein, I.A., Burmeister, J., Jantsch, M.C., Zehlius-Eckert, W. and Müller, M. (2020) Biodiversity Functions of Short Rotation Coppice Stands—Results of a Meta Study on Ground Beetles (Coleoptera: Carabidae). Biomass and Bioenergy. 132, Article ID: 105416.
https://doi.org/10.1016/j.biombioe.2019.105416
[32] Kriegel, P., Fritze, M. and Thorn, S. (2021) Surface Temperature and Shrub Cover Drive Ground Beetle (Coleoptera: Carabidae) Assemblages in Short-Rotation Coppices. Agricultural and Forest Entomology, 23, 400-410.
https://doi.org/10.1111/afe.12441