AJCC  Vol.10 No.4 , December 2021
Fractionation of Organic Carbon and Stock Measurement in the Sundarbans Mangrove Soils of Bangladesh
Abstract: Mangrove soils are well known for their high capacity of storing organic carbon (SOC) in various pools; however, a relatively small change in SOC pools could cause significant impacts on greenhouse gas concentrations. Thus, for an in-depth understanding of SOC distribution and stock to predict the role of Sundarbans mangrove in mitigating global warming and greenhouse effects, different extraction methods were employed to fractionate the SOC of Sundarbans soils into cold-water (CWSC) and hot-water (HWSC) soluble, moderately labile (MLF), microbial biomass carbon (MBC), and resistant fractions (RF) using a newly developed modified-method. A significant variation in total SOC (p < 0.001), SOC stock (p < 0.001) and soil bulk density (p < 0.05) at the Sundarbans mangrove forest were observed. In most soils, bulk density increased from the surface to 100 cm depth. The total SOC concentrations were higher in most surface soils and ranged from 1.21% ± 0.02% to 8.19% ± 0.09%. However, C in lower layers may be more resistant than that of upper soils because of differences in compositions, sources and environmental conditions. SOC was predominately associated with the resistant fraction (81% - 97%), followed by MLF (2% - 10%), HWSC (1% - 4%), MBC (~0% - 4%), and CWSC (~0% - 3%). The significant positive correlations between different C fractions suggested that C pools are interdependent and need proper management plans to increase these pools in Sundarbans soils. The SOC stock of the studied areas ranged between 16.75 ± 3.83 to 135.12 ± 28.61 kg·C·m?2 in 1 m soil profile and has an average of 31.80 kg·C·m?2. The substratum soils had more carbon than the upper layers in the Sundarbans wetland due to burial and preservation of carbon by frequent tidal inundation. A higher SOC stock in the soil profile and its primary association in resistant fractions suggested that Sundarbans mangrove soil is sequestering carbon and thereby serving as a significant carbon sink in Bangladesh.
Cite this paper: Akther, S. , Islam, M. , Hossain, M. and Parveen, Z. (2021) Fractionation of Organic Carbon and Stock Measurement in the Sundarbans Mangrove Soils of Bangladesh. American Journal of Climate Change, 10, 561-580. doi: 10.4236/ajcc.2021.104028.

[1]   Alongi, D. M. (2002). Present State and Future of the World’s Mangrove Forests. Environmental Conservation, 29, 331-349.

[2]   Alongi, D. M. (2008). Mangrove Forests: Resilience, Protection from Tsunamis, and Responses to Global Climate Change. Estuarine, Coastal and Shelf Science, 76, 1-13.

[3]   Alongi, D. M. (2012). Carbon Sequestration in Mangrove Forests. Carbon Management, 3, 313-322.

[4]   Arifanti, V. B., Kauffman, J. B., Hadriyanto, D., Murdiyarso, D., & Diana, R. (2019). Carbon Dynamics and Land Use Carbon Footprints in Mangrove-Converted Aquaculture: The Case of the Mahakam Delta, Indonesia. Forest Ecology and Management, 432, 17-29.

[5]   Blake, G. R. (1965). Bulk Density. In C. A. Black et al. (Eds.), Methods of Soil Analysis. Part 1. Physical and Mineralogical Properties, Including Statistics of Measurement and Sampling. Agronomy Series 9 (pp. 374-390). American Society of Agronomy, Inc.

[6]   Bouyoucos, G. J. (1936). Directions for Making Mechanical Analysis of Soils by the Hydrometer Method. Soil Science, 42, 225-230.

[7]   Bridgham, S. D., Megonigal, J. P., Keller, J. K., Bliss, N. B., & Trettin, C. (2006). The Carbon Balance of North American Wetlands. Wetlands, 26, 889-916.

[8]   Donato, D. C., Kauffman, J. B., Murdiyarso, D., Kurnianto, S., & Stidham, M. (2011). Mangroves among the Most Carbon-Rich Forests in the Tropics. Nature Geoscience, 4, 293-297.

[9]   Doran, J. W., & Parkins, T. B. (1994). Defining and Assessing Soil Quality. In J. W. Doran, D. C. Coleman, D. F. Bezdicek, B. A., Stewart (Eds.), Defining Soil Quality for a Sustainable Environment (pp. 3-21). Soil Science Society America.

[10]   Duke, N. C., Meynecke, J. O., Dittmann, S., Ellison, A. M., Anger, K., Berger, U., Cannicci, S., Diele, K., Ewel, K. C., Field, C. D., Koedam, N., Lee, S. Y., Marchand, C., Nordhaus, I., & Dahdouh-Guebas, F. (2007). A World without Mangroves? Science, 317, 41-42.

[11]   Eid, E. M., & Shaltout, K. H. (2016). Distribution of Soil Organic Carbon in the Mangrove Avicennia marina (Forssk.) Vierh. along the Egyptian Red Sea Coast. Regional Studies in Marine Science, 3, 76-82.

[12]   Eid, E. M., Arshad M., Shaltout, K. H., El-Sheikh, M. A., Alfarhan, A. H., Picó, Y., & Barcelo, D. (2019). Effect of the Conversion of Mangroves into Shrimp Farms on Carbon Stock in the Sediment along the Southern Red Sea Coast, Saudi Arabia. Environmental Research, 176, Article ID: 108536.

[13]   Erich, M. S., Plante, A. F., Ferandez, J. M., Mallory, E. B., & Ohno, T. (2012). Effects of Profile Depth and Management on the Composition of Labile and Total Organic Matter. Soil Science Society of America Journal, 76, 408-419.

[14]   Eva, M. A., Piash, M. I., Hossain, M. F., & Parveen, Z. (2018). Fractionation of Organic Carbon in Arial Beel Wetland Soils of Bangladesh. American Journal of Environmental Science, 14, 86-94.

[15]   Ghani, A., Dexer, M., & Perrott, K. W. (2003). Hot-Water Extractable Carbon in Soils: A Sensitive Measurement for Determining Impacts of Fertilization, Grazing and Cultivation. Soil Biology and Biochemistry, 35, 1231-1243.

[16]   Gregorich, E. G., Beare, M. H., Stoklas, U., & St-Georges, P. (2003). Biodegradability of Soluble Organic Matter in Maize Cropped Soils. Geoderma, 113, 237-252.

[17]   Grellier, S., Janeau, J. L., Nhon, D. H., Cuc, N. T. K., Quynh, L. T. P., Thao, P. T. T., Trang, T. T. N., & Marchand, C. (2017). Changes in Soil Characteristics and C Dynamics after Mangrove Clearing (Vietnam). Science of the Total Environment, 593-594, 654-663.

[18]   Haynes, R. J., & Francis, G. S. (1993). Changes in Microbial Biomass C, Soil Carbohydrate Composition and Aggregate Stability Induced by Growth of Selected Crop and Forage Species under Field Conditions. Journal of Soil Science, 44, 665-675.

[19]   Hofman, J., Bezchlebova, J., Dusek, L., Dolezal, L., Holoubek, I., Andel, P., Ansorgova, A., & Maly, S. (2003). Novel Approach to Monitoring of the Soil Biological Quality. Environment International, 28, 771-778.

[20]   Hossain, M. F., Chen, W., & Zhang, Y. (2015). Bulk Density of Mineral and Organic Soils in the Canada’s Arctic and Sub-Arctic. Information Processing in Agriculture, 2, 183-190.

[21]   Hossain, M. F., Maksud Kamal, A. S. M., Ahmed, S. M., Eva, M. A., & Parveen, Z. (2020). Soil Organic Carbon Pool and Its Storage in Wetland Soils of Bangladesh. American Journal of Environmental Science, 16, 55-67.

[22]   Hossain, M. F., Zhang, Y., Chen, W., Wang, J., & Pavlic, G. (2007). Soil Organic Carbon Content in Northern Canada: A Database of Field Measurements and Its Analysis. Canadian Journal Soil Science, 87, 259-268.

[23]   Houghton, R. A. (2007). Balancing the Global Carbon Budget. Annual Review of Earth and Planetary Sciences, 35, 313-347.

[24]   Hoyle, F. C., & Murphy, D. V. (2006). Seasonal Changes in Microbial Function and Diversity Associated with Stubble Retention versus Burning. Australian Journal of Soil Research, 44, 407-423.

[25]   Hussain, Z., & Acharya, G. (1994). Mangrove of the Sundarbans, Volume Two: Bangladesh. IUCN Southeast Asia Regional Office.

[26]   Kauffman, J. B., Bernardino, A. F., Ferreira, T. O., Bolton, N. W., Gomes, L. E. O., & Nobrega, G. N. (2018). Shrimp Ponds Lead to Massive Loss of Soil Carbon and Greenhouse Gas Emissions in Northeastern Brazilian Mangroves. Ecology and Evolution, 8, 5530-5540.

[27]   Kauffman, J. B., Heider, C., Cole, T. G., Dwire, K. A., & Donato, D. (2011). Ecosystem Carbon Stocks of Micronesian Mangrove Forests. Wetlands, 31, 343-352.

[28]   Koshiba, S., Besebes, M., Soaladaob, K., Isechal, A. L., Victor, S., & Golbuu, Y. (2013). Palau’s Taro Fields and Mangroves Protect the Coral Reefs by Trapping Eroded Fine Sediment. Wetlands Ecology and Management, 21, 157-164.

[29]   Kusumaningtyas, M. A., Hutahaean A. A., Fischer, H. W., Fischer, Pérez-Mayo, M., Ransby, D., & Jennerjahn, T. C. (2019). Variability in the Organic Carbon Stocks, Sources, and Accumulation Rates of Indonesian Mangrove Ecosystems. Estuarine, Coastal and Shelf Science, 218, 310-323.

[30]   Lal, R. (2008). Carbon Sequestration. Philosophical Transactions of the Royal Society B, 363, 815-830.

[31]   Meersmans, J., De Ridder, F., Canters, F., De Baets, S., & Van Molle, M. (2008). A Multiple Regression Approach to Assess the Spatial Distribution of Soil Organic Carbon (SOC) at the Regional Scale (Flanders, Belgium). Geoderma, 143, 1-13.

[32]   Mitsch, W. J., Bernal, B., Nahlik, A. M., Mander, U., Zhang, L., Anderson, C. J., Jorgensen, S. E., & Brix, H. (2013). Wetlands, Carbon and Climate Change. Landscape Ecology, 28, 583-597.

[33]   Murdiyarso, D., Donato, D., Kauffman, J. B., Stidham, M., & Kanninen, M. (2009). Carbon Storage in Mangrove and Peatland Ecosystems: A Preliminary Account from Plots in Indonesia. Center for International Forest Research, 37 p.

[34]   Murdiyarso, D., Purbopuspito, J., Kauffman, J. B., Warren, M. W., Sasmito, S. D., Donato, D. C., Manuri, S., Krisnawati, H., Taberima, S., & Kurnianto, S. (2015). The Potential of Indonesian Mangrove Forests for Global Climate Change Mitigation. Nature Climate Change, 5, 1089-1092.

[35]   Oelkers, E. H., & Cole, D. R. (2008). Carbon Dioxide Sequestration: A Solution to the Global Problem. Elements, 4, 305-310.

[36]   Perera, K. A. R. S., & Amarasinghe, M. D. (2019). Carbon Sequestration Capacity of Mangrove Soils in Micro Tidal Estuaries and Lagoons: A Case Study from Sri Lanka. Geoderma, 347, 80-89.

[37]   Pérez, A., Machado, W., Gutierrez, D., Stokes, D., Sanders, L., Smoak, J. M., Santos, I., & Sanders, C. J. (2017). Changes in Organic Carbon Accumulation Driven by Mangrove Expansion and Deforestation in a New Zealand Estuary. Estuarine, Coastal and Shelf Science, 192, 108-116.

[38]   Pinheiro, E. F. M., Pereira, M. G., Anjos, L. H. C., & Machado, P. L. O. A. (2004). Fracionamento densimétrico da material organica do solo sob diferentes sistemas de manejo e cobertura vegetal em Paty do Alferes. Revista Brasileira de Ciência do Solo, 28, 731-37.

[39]   Provenzano, M. R., Caricasole, P., Brunetti, G., & Senesi, N. (2010). Dissolved Organic Matter Extracted with Water and a Saline Solution from Different Soil Profiles. Soil Science, 175, 255-262.

[40]   Rasse, D. P., Mulder, J., Moni, C. & Chenu, C. (2006). Carbon Turnover Kinetics with Depth in a French Loamy Soil. Soil Science Society of America Journal, 70, 2097-2105.

[41]   Schnitzer, M., & Schuppli, P. (1989). Method for the Sequential Extraction of Organic Matter from Soils and Soil Fractions. Soil Science Society of America Journal, 53, 1418-1424.

[42]   Siddiqi, N. A. (2001). Mangroves of Bangladesh Sundarbans and Accretion Areas. In D. D. L. Lecerda (Ed.), Mangrove Ecosystems Function and Management (pp. 142-292). Springer-Verlag.

[43]   Spaulding, M., Kainuma, M., & Collins, L. (2010). World Atlas of Mangroves. Earthscan.

[44]   Sylvia, D. M., Fuhrmann, J. J., Hartel, P. G., & Zuberer, D. A. (2005). Principles and Applications of Soil Microbiology (2nd ed.). Prentice Hall.

[45]   Twilley, R. R., Chen, R. H., & Hargis, T. (1992). Carbon Sinks in Mangroves and Their Implications to Carbon Budget of Tropical Coastal Ecosystems. Water, Air, and Soil Pollution, 64, 265-288.

[46]   Vance, E. D., Brookes, P. C., & Jenkinson, D. S. (1987). An Extraction Method for Measuring Soil Microbial Biomass Carbon. Soil Biology and Biochemistry, 19, 703-707.

[47]   Walkley, A., & Black, I. A. (1934). An Examination of the Degtjareff Method for Determining Soil Organic Matter and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.

[48]   Wang, Q. K., & Wang, S. L. (2007). Soil Organic Matter under Different Forest Types in Southern China. Geoderma, 142, 349-356.

[49]   Wattel-Koekkoek, E. J. W., van Genuchten, P. P. L., Buurman, P., & van Lagen, B. (2001). Amount and Composition of Clay-Associated Soil Organic Matter in a Range of Kaolinitic and Smectitic Soils. Geoderma, 99, 27-49.

[50]   Zhang, J. B., Song, C. C., & Yang, W. Y. (2006). Land Use Effects on the Distribution of Labile Organic Carbon Fractions through Soil Profiles. Soil Science Society America Journal, 70, 660-667.