[1] Abu-Asab, M. S., Peterson, P. M., Shetler, S. G., & Orli, S. S. (2001). Earlier Plant Flowering in Spring as a Response to Global Warming in the Washington, DC, Area. Biodiversity and Conservation, 10, 597-612.
https://doi.org/10.1023/A:1016667125469
[2] Bieniek, P. A., & Walsh, J. E. (2014). Using Climate Divisions to Analyze Variation and Trends in Alaska Temperature and Precipitation. Journal of Climate, 27, 2800-2818.
https://doi.org/10.1175/JCLI-D-13-00342.1
[3] Bradley, N. L., Leopold, A. C., Ross, J., & Huffaker, W. (1999). Phenology Changes Reflect Climate Change in Wisconsin. Proceedings of the National Academy of Sciences of the United States of America, 96, 9701-9704.
https://doi.org/10.1073/pnas.96.17.9701
[4] Cheng, M., & Zhang, M. (2019). Forecasting Flowering and Maturity Times of Barley Using Six Machine Learning Algorithms. Journal of Agricultural Science and Technology B, 9, 373-391.
https://doi.org/10.17265/2161-6264/2019.06.002
[5] Chmielewski, F. M., & Rötzer, T. (2001). Response of Tree Phenology to Climate Changes across Europe. Agricultural and Forest Meteorology, 108, 101-112.
https://doi.org/10.1016/S0168-1923(01)00233-7
[6] Chmielewski, F. M., Müller, A., & Bruns, E. (2004). Climate Changes and Trend in Phenology of Fruit Trees and Field Crops in Germany, 1961-2000. Agricultural and Forest Meteorology, 121, 69-78.
https://doi.org/10.1016/S0168-1923(03)00161-8
[7] Chuine, I., Yiou, P., Viovy, N., Seguin, B., Daux, V., & Ladurie, E. L. R. (2004). Historical Phenology: Grape Ripening as a Past Climate Indicator. Nature, 432, 289-290.
https://doi.org/10.1038/432289a
[8] Dofing, S. M. (1995). Phenological Development-Yield Relationships in Spring Barley in a Subarctic Environment. Canadian Journal of Plant Science, 75, 93-97.
https://doi.org/10.4141/cjps95-015
[9] Hájková, L., Možný, M., Kožnarová, V., Bartošová, L., & Žalud, Z. (2019). Relationship between Phenological and Meterorological Data as an Important Input into Spring Barley Phenological Model. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 67, 679-688.
https://doi.org/10.11118/actaun201967030679
[10] He, L., Asseng, S., Zhao, G., Wu, D., Yang, X., Zhuang, W., Jin, N., & Yu, Q. (2015). Impacts of Recent Climate Warming, Cultivar Changes, and Crop Management on Winter Wheat Phenology across the Loess Plateau of China. Agricultural and Forest Meteorology, 200, 135-143.
https://doi.org/10.1016/j.agrformet.2014.09.011
[11] Hinzman, L. D., Bettez, N. D., Bolton, W. R., Chapin, F. S. et al. (2005). Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions. Climatic Change, 72, 251-298.
https://doi.org/10.1007/s10584-005-5352-2
[12] Jia, G. J., & Epstein, H. E. (2003). Greening of Arctic Alaska, 1981-2001. Geophysical Research Letters, 30, Article No. 2067.
https://doi.org/10.1029/2003GL018268
[13] Karlsen, S. R., Høgda, K. A., Wielgolaski, F. E., Tolvanen, A., Tømmervik, H., Poikolainen, J., & Kubin, E. (2009). Growing-Season Trend in Fennoscandia 1982-2006, Determined from Satellite and Phenology Data. Climatic Research, 39, 275-286.
https://doi.org/10.3354/cr00828
[14] Kaukoranta, T., & Hakala, K. (2008). Impact of Spring Warming on Sowing Times of Cereal, Potato and Sugar Beet in Finland. Agricultural and Food Science, 17, 165-176.
https://doi.org/10.2137/145960608785328198
[15] Khanduri, V. P., Sharma, C. M., & Singh, S. P. (2008). The Effects of Climate Change on Plant Phenology. The Environmentalist, 28, 143-147.
https://doi.org/10.1007/s10669-007-9153-1
[16] Kimball, J. S., McDonald, K. C., & Zhao, M. (2006). Spring Thaw and Its Effect on Terrestrial Vegetation Productivity in the Western Arctic Observed from Satellite Microwave and Optical Remote Sensing. Earth Interactions, 10, 1-22.
https://doi.org/10.1175/EI187.1
[17] Lader, R., Walsh, J. E., Bhatt, U. S., & Bieniek, P. A. (2017). Projections of Twenty-First-Century Climate Extremes for Alaska via Dynamical Downscaling and Quantile Mapping. Journal of Applied Meteorology Climatology, 56, 2393-2409.
https://doi.org/10.1175/JAMC-D-16-0415.1
[18] Lader, R., Walsh, J. E., Bhatt, U. S., & Bieniek, P. A. (2018). Agro-Climate Projections for a Warming Alaska. Earth Interactions, 22, 1-24.
https://doi.org/10.1175/EI-D-17-0036.1
[19] Lanning, S. P., Kephart, K., Carlson, G. R., Eckhoff, J. E., Stougaard, R. N., Wichman, D. M., Martin, J. M., & Talbert, L. E. (2010). Climatic Change and Agronomic Performance of Hard Red Spring Wheat from 1950 to 2007. Crop Science, 50, 835-841.
https://doi.org/10.2135/cropsci2009.06.0314
[20] Lobell, D. B., & Field, C. B. (2007). Global Scale Climate-Crop Yield Relationships and the Impacts of Recent Warming. Environmental Research Letters, 2, Article ID: 014002.
https://doi.org/10.1088/1748-9326/2/1/014002
[21] Lobell, D. B., Schlenker,W., & Costa-Roberts, J. (2011). Climate Trends and Global Crop Production since 1980. Science, 333, 616-620.
https://doi.org/10.1126/science.1204531
[22] Luo, Q., O’Leary, G., Cleverly, J., & Eamus, D. (2018). Effectiveness of Time of Sowing and Cultivar Choice for Managing Climate Change: Wheat Crop Phenology and Water Use Efficiency. International Journal of Biometeorology, 62, 1049-1061.
https://doi.org/10.1007/s00484-018-1508-4
[23] Menzel, A. (2000). Trends in Phenological Phases in Europe between 1951 and 1996. International Journal of Biometeorology, 44, 76-81.
https://doi.org/10.1007/s004840000054
[24] Morison, J. I. L., & Morecroft, M. D. (2006). Plant Growth and Climate Change. Wiley-Blackwell, 232 p.
https://doi.org/10.1002/9780470988695
[25] Olesen, J. E., Børgesen, C. D., Elsgaard, L., Palosuo, T., Rötter, R. P., Skjelvåg, A. O., Peltonen-Sainio, P., Börjesson, T., Trnka, M., Ewert, F., Siebert, S., Brisson, N., Eitzinger, J., van Asselt, E. D., Oberforster, M., & van der Fels-Klerx., H. J. (2012). Change in Time of Sowing, Flowering and Maturity of Cereals in Europe under Climate Change. Food Additives & Contaminants: Part A, 29, 1527-1542.
https://doi.org/10.1080/19440049.2012.712060
[26] Penuelas, J., Filella, I., & Comas, P. (2002). Changed Plants and Animal Cycles from 1952 to 2000 in the Mediterranean Region. Global Change Biology, 8, 531-544.
https://doi.org/10.1046/j.1365-2486.2002.00489.x
[27] R Development Core Team (2018). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.
https://www.R-project.org/
[28] Rezaei, E. E., Siebert, S., Hüging, H., & Ewart, F. (2018). Climate Change Effect on Wheat Phenology Depends on Cultivar Change. Scientific Reports, 8, Article No. 4891.
https://doi.org/10.1038/s41598-018-23101-2
[29] Robeson, S. M. (2002). Increasing Growing-Season Length in Illinois during the 20th Century. Climatic Change, 52, 219-238.
https://doi.org/10.1023/A:1013088011223
[30] Rötter, R. P., Palosuo, T., Pirttioja, N. K., Dubrovsky, M., Salo, T., Fronzek, S., Aikasalo, R., Trnka, M., Ristolainen, A., & Carter, T. R. (2011). What Would Happen to Barley Production in Finland if Global Warming Exceeded 4˚C? A Model-Based Assessment. European Journal of Agronomy, 35, 205-214.
https://doi.org/10.1016/j.eja.2011.06.003
[31] Rötzer, T., & Chmielewski, F. M. (2001). Phenological Maps of Europe. Climatic Research, 18, 249-257.
https://doi.org/10.3354/cr018249
[32] Sharratt, B. S., Knight, C. W., & Wooding, F. (2003). Climatic Impact on Small Grain Production in the Subarctic Region of the United States. Arctic, 56, 219-226.
https://doi.org/10.14430/arctic617
[33] Shulski, M., & Wendler, G. (2007). The Climate of Alaska. University of Alaska Press.
[34] Slafer, G. A., & Rawson, H. M. (1995). Base and Optimum Temperatures Vary with Genotype and Stage of Development in Wheat. Plant, Cell & Environment, 18, 671-679.
https://doi.org/10.1111/j.1365-3040.1995.tb00568.x
[35] Stevenson, K. T., Rader, H. B., Alessa, L., Kliskey, A. D., Pantoja, A., Clark, M., & Smeek, J. (2104). Sustainable Agriculture for Alaska and the Circumpolar North: Part II. Environmental, Geophysical, Biological and Socioeconomic Challenges. Arctic, 67, 296-319.
https://doi.org/10.14430/arctic4408
[36] Stone, R. S., Dutton, E. G., Harris, J. M., & Longenecker, D. (2002). Earlier Spring Snowmelt in Northern Alaska as an Indicator of Climate Change. Journal of Geophysical Research, 107, 4089.
https://doi.org/10.1029/2000JD000286
[37] Tao, F., Yokozawa, M., Xu, Y., Hayashi, Y., & Zhang, Z. (2006). Climate Changes and Trend in Phenology and Yields of Field Crops in China, 1981-2000. Agricultural and Forest Meteorology, 138, 82-92.
https://doi.org/10.1016/j.agrformet.2006.03.014
[38] Uleberg, E., Hanssen-Bauer, I., van Oort, B., & Dalmannsdottir, S. (2014). Impact of Climate Change on Agriculture in Northern Norway and Potential Strategies for Adaption. Climatic Change, 122, 27-39.
https://doi.org/10.1007/s10584-013-0983-1
[39] Van Veldhuizen, R. M., & Knight, C. W. (2004). Performance of Agronomic Crop Varieties in Alaska 1978-2002. AFES Bulletin 111. Agriculture and Foresty Experiment Station, University of Alaska Fairbanks, 136 p.
http://afesresearch.uaf.edu/publications/?&s=*&pt=*&cat=23
[40] Van Veldhuizen, R. M., Zhang, M., & Knight, C. W. (2014). Performance of Agronomic Crop Varieties in Alaska 1978-2012. AFES Bulletin 116. Agriculture and Forestry Experiment Station, University of Alaska Fairbanks, 252 p.
http://afesresearch.uaf.edu/publications/?&s=*&pt=*&cat=23
[41] Wendler, G., & Shulski, M. (2009). A Century of Climate Change for Fairbanks, Alaska. Arctic, 62, 295-300.
https://doi.org/10.14430/arctic149
[42] Xiao, D., Tao, F., Liu, Y., Shi, W., Wang, M., Liu, F., Zhang, S., & Zhu, Z. (2013). Observed Changes in Winter Wheat Phenology in the North China Plain for 1981-2009. International Journal of Biometeorology, 57, 275-285.
https://doi.org/10.1007/s00484-012-0552-8
[43] Young, A. H., Knapp, K. R., Inamdar, A., Hankins, W., & Rossow, W. B. (2018). The International Satellite Cloud Climatology Projection H-Series Climate Data Record Product. Earth System Science Data, 10, 583-593.
https://doi.org/10.5194/essd-10-583-2018