Back
 AE  Vol.10 No.1 , January 2022
Potential of Two Metarhizium anisopliae (Clavicipitaceae) Isolates for Biological Control of Diatraea saccharalis (Lepidoptera: Crambidae) Eggs
Abstract: Chemical pesticides tend to accumulate in soil, resulting in human and environmental health risks. Hence, alternative methodologies involving chemical pesticides are beneficial for the control of agricultural pests. Metarhizium anisopliae is an entomopathogenic fungus that acts on different developmental stages of pest insects such as Diatraea saccharalis, a holometabolic lepidopteran with high potential for infestation in sugarcane crops. The present study evaluated the biocontrol effect of M. anisopliae isolates MT and E9 on D. saccharalis eggs at different ages by investigating the external and internal morphological alterations in treated eggs. Conidial suspensions of M. anisopliae isolated from MT and E9 at concentrations of 107 conidia/mL were applied to eggs of D. saccharalis aged 0, 24, 48, 72, 96 and 120 h. The eggs were observed every 24 h during development (0 h to 144 h). Samples were collected for observational, histological, and ultrastructural analyses. We found that the MT isolate caused 100% inviability of eggs aged 0 - 72 h, 144 h after the bioassays, while the effect of the E9 isolate varied between 49.40% and 93.75%. Melanization was observed on the periphery of the eggs 24 h after the bioassays. Fungal hyphae developed 48 h after bioassays, crossed the egg chorion, and dispersed through the yolk region, inhibiting embryonic development. After 72 h, hyphae and conidiophores were observed on the eggs, which persisted for 144 h. In sum, M. anisopliae MT isolate can be used as a biological controller for D. saccharalis eggs.
Cite this paper: Vieira da Silva, C. , Vinicius Daquila, B. , Carla Lauer Schneider, L. , Roberto Tait Caleffe, R. , Cesar Polonio, J. , Araujo Canazart, D. , Nanya, S. and Conte, H. (2022) Potential of Two Metarhizium anisopliae (Clavicipitaceae) Isolates for Biological Control of Diatraea saccharalis (Lepidoptera: Crambidae) Eggs. Advances in Entomology, 10, 63-76. doi: 10.4236/ae.2022.101005.
References

[1]   Aktar, M.W., Sengupta, D. and Chowdhury, A. (2009) Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdisciplinary Toxicology, 2, 1-12.
https://doi.org/10.2478/v10102-009-0001-7

[2]   Zhang, L., Yan, C., Guo, Q., Zhang, J. and Ruiz-Menjivar, J. (2018) The Impact of Agricultural Chemical Inputs on Environment: Global Evidence from Informetrics Analysis and visualization. International Journal Low-Carbon Technologies, 13, 338-352.
https://doi.org/10.1093/ijlct/cty039

[3]   Edwards, C.A. and Adams, R.S. (1970) Persistent Pesticides in the Environment. CRC Critical Review in Environmental Control, 1, 7-67.
https://doi.org/10.1080/10643387009381563

[4]   Chang, G.R. (2018) Persistent Organochlorine Pesticides in Aquatic Environments and Fishes in Taiwan and Their Risk Assessment. Environmental Science and Pollution Research, 25, 7699-7708.
https://doi.org/10.1007/s11356-017-1110-z

[5]   Bilal. M., Iqbal, H.M.N. and Barceló, D. (2019) Persistence of Pesticides-Based Contaminants in the Environment and Their Effective Degradation Using Laccase-Assisted Biocatalytic Systems. Science of the Total Environment, 695, Article ID: 133896.
https://doi.org/10.1016/j.scitotenv.2019.133896

[6]   Revindran, J., Megha, P. and Sreedev, P. (2016) Organochlorine Pesticides, Their Toxic Effects on Living Organisms and Their Fate in the Environment. Interdisciplinary Toxicology, 9, 90-100.
https://doi.org/10.1515/intox-2016-0012

[7]   Nicolopoulou-Stamati, P., Maipas, S., Kotampasi, C., Stamatis, P. and Hens, L. (2016) Chemical Pesticides and Human Health: The Urgent Need for a New Concept in Agriculture. Frontiers in Public Health, 4, Article No. 148.
https://doi.org/10.3389/fpubh.2016.00148

[8]   Bastos, P.L., Bastos, A.F.T.L., Gurgel, A.D.M. and Gurgel, I.G.D. (2020) Carcinogenicity and Mutagenicity of Malathion and Its Two Analogues: A Systematic Review. Ciência e Saúde Coletiva, 25, 3273-3298.
https://doi.org/10.1590/1413-81232020258.10672018

[9]   Nunes, A., Schmitz, C., Moura, S. and Maraschin, M. (2021) The Use of Pesticides in Brazil and the Risks Linked to Human Health. Brazilian Journal of Development, 7, 37885-37904.
https://doi.org/10.34117/bjdv7n4-311

[10]   Daquila, B.V., Scudeler, E.L., Dossi, F.C.A., Moreira, D.R., Pamphile, J.A. and Conte, H. (2019) Action of Bacillus thuringiensis (Bacillales: Bacillaceae) in the Midgut of the Sugarcane Borer Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae). Ecotoxicology and Environmental Safety, 184, Article ID: 109642.
https://doi.org/10.1016/j.ecoenv.2019.109642

[11]   Albuquerque, A.C., Pereira, K.C.A., Cunha, F.M., Veiga, A.F.S.L., Athayde, A.C.R. and Lima, A.A.L.A. (2005) Patogenicidade de Metarhizium anisopliae var. Anisopliae e Metarhizium anisopliae var. Acridum Sobre Nasutitermes coxipoensis (Holmgren) (Isoptera: Termitidae). Neotropical Entomology, 34, 585-591.
https://doi.org/10.1590/S1519-566X2005000400008

[12]   Rodrigues, I., Forim, M., Silva, M., Fernandes, J. and Filho, A. (2016) Effect of Ultraviolet Radiation on Fungi Beauveria bassiana and Metarhizium anisopliae, Pure and Encapsulated, and Bio-Insecticide Action on Diatraea saccharalis. Advances in Entomology, 4, 151-162.
https://doi.org/10.4236/ae.2016.43016

[13]   Moraes, I.O., Capalbo, D.M.F. and Arruda, R.O.M. (1998) Produção de bactérias entomopatogênicas. In: Alves, S.B., Ed., Controle microbiano de insetos, Fundação de Estudos Agrários Luiz de Queiroz, Piracicaba, 815-843.

[14]   Shi, W.B. and Feng, M.G. (2004) Lethal Effect of Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces fumosoroseus on the Eggs of Tetranynchus cinnabarinus (Acari: Tetranychidae) with a Description of a Mite Egg Bioassay System. Biological Control, 30, 165-173.
https://doi.org/10.1016/j.biocontrol.2004.01.017

[15]   Garcia, M.V., Montero, A.C., Szabo, M.J.P., Prette, N. and Bechara, G.H. (2005) Mechanism of Infection and Colonization of Rhipicephalus sanguineus Eggs by Metarhizium anisopliae as Revealed by Scanning Electron Microscopy and Histopathology. Brazilian Journal of Microbiology, 36, 368-372.
https://doi.org/10.1590/S1517-83822005000400012

[16]   Kim, J.J., Jeong, G., Han, J.H. and Lee, S. (2013) Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana. Mycobiology, 41, 221-224.
https://doi.org/10.5941/MYCO.2013.41.4.221

[17]   Kordi, M.K., Farrokhi, N., Masoudi, A., Shadmehri, A.D. and Gharanjik, S. (2015) Expression Analyses of Some Beauveria bassiana Genes in Response to Cuticles of Four Different Insects. Journal of Crop Protection, 4, 675-690.

[18]   Keyhani, N.O. (2018) Lipid Biology in Fungal Stress and Virulence: Entomopathogenic Fungi. Fungal Biology, 122, 420-429.
https://doi.org/10.1016/j.funbio.2017.07.003

[19]   Pérez, J.S.G., Paredes-Espinosa, R., Jump, G.E. and Gil, O.J.A. (2021) Selecting Native Entomopathogenic Fungi against Cosmopolites Sordidus (Germar) in the Laboratory. Revista de Ciências Agroveterinárias, 20, 93-97.
https://doi.org/10.5965/223811712012021093

[20]   Baleba, S.B.S., Agbessenou, A., Getahun, M.N., Akutse, K.S., Subramanian, S. and Masiga, D. (2021) Infection of the Stable Fly, Stomoxys calcitrans, L. 1758 (Diptera: Muscidae) by the Entomopathogenic Fungi Metarhizium anisopliae (Hypocreales: Clavicipitaceae) Negatively Affects Its Survival, Feeding Propensity, Fecundity, Fertility, and Fitness Parameters. Frontiers in Fungal Biology, 2, Article ID: 637817.
https://doi.org/10.3389/ffunb.2021.637817

[21]   Mwamburi, L.A. (2021) Endophytic Fungi, Beauveria bassiana and Metarhizium anisopliae, Confer Control of the Fall Armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), in Two Tomato Varieties. Egyptian Journal of Biological Pest Control, 31, Article No. 7.
https://doi.org/10.1186/s41938-020-00357-3

[22]   Bergamo, R.H.S., Daquila, B.V. and Conte, H. (2019) Sustentabilidade agrícola com fungos entomopatogênicos. In: Neto, B.R.S., Ed., Principais grupos e aplicações biotecnológicas dos fungos, Atena editora, Ponta Grossa, 41-52.
https://doi.org/10.22533/at.ed.3071918105

[23]   Daquila, B.V. and Conte, H. (2019) Biotecnologia ambiental e desenvolvimento agrícola sustentável. In: Aguileira, J.G. and Zuffo, A.M., Eds., A preservaçõo do meio ambiente e o desenvolvimento sustentável, Atena editora, Ponta Grossa, 92-105.
https://doi.org/10.22533/at.ed.36519140810

[24]   Vicentini, S. and Magalhães, B.P. (1996) Infection of the Grasshopper, Rhammatocerus schistocercoides Rehn by the entomopathogenic fungus, Metarhizium flavoviride Gams & Rozsypal. Anais da Sociedade Entomológica do Brasil, 25, 309-314.
https://doi.org/10.37486/0301-8059.v25i2.1134

[25]   Shu-Sheng, L. and Guang-Mei, Z. (1997) Effects of Bacillus thuringiensis on Eggs of Three Lepidopterous Pests of Crucifer Vegetable Crops. In: Sivapragasam, A., Loke, W.H., Hussan, A.K. and Lim, G.S., Eds., The Management of Diamondback Moth and Other Cruciferous Pests, Kuala Lumpur, Malaysia, 109-112.

[26]   Alves, S.B., Rossi, L.S., Lopes, R.B., Tamai, M.A. and Pereira, R.M. (2002) Beauveria bassiana Yeast Phase on Agar Medium and Its Pathogenicity against Diatraea saccharalis (Lepidoptera: Crambidae) and Tetranychus urticae (Acari: Tetranychidade). Journal of Invertebrate Pathology, 81, 70-77.
https://doi.org/10.1016/S0022-2011(02)00147-7

[27]   Ekesi, S., Adamu, R.S. and Maniania, N.K. (2002) Ovicidal Activity of Entomopathogenic Hyphomycetes to the Legume Pod Borer, Maruca vitrata and the Pod Sucking Bug Clavigralla tomentosicollis. Crop Protection, 21, 589-595.
https://doi.org/10.1016/S0261-2194(02)00015-7

[28]   Egbuna, C., Sawicka, B., Tijjani, H., Kryeziu, L.T., Ifemeje, J.C., Skiba, D. and Lukong, C.B. (2020) Biopesticides, Safety Issues and Market Trends. In: Egbuna, C. and Sawicka, B., Eds., Natural Remedies for Pest, Disease and Weed Control, Academic Press, San Diego, 43-53.
https://doi.org/10.1016/B978-0-12-819304-4.00004-X

[29]   Camara, M.C., Monteiro, R.A., Carvalho, L.B., Oliveira, J.L. and Fraceto, L.F. (2021) Enzyme Stimuli-Responsive Nanoparticles for Bioinsecticides: An Emerging Approach for Uses in Crop Protection. ACS Sustainable Chemistry & Engineering, 9, 106-112.
https://doi.org/10.1021/acssuschemeng.0c08054

[30]   Shen, Y., Cui, B., Wang, Y. and Cui, H. (2021) Marketing Strategy and Environmental Safety of Nanobiopesticides. In: Jogaiah, S., Singh, H.B., Fraceto, L.F. and Lima, R., Eds., Advances in Nano-Fertilizers and Nano-Pesticides in Agriculture: A Smart Delivery System for Crop Improvement, Woodhead Publishing, Sawston, 265-279.
https://doi.org/10.1016/B978-0-12-820092-6.00011-2

[31]   Canazart, D.A., Daquila, B.V. Schneider, L.C.L., Silva, C.V., Gigliolli, A.A.S., Ruvolo-Takasususki, M.C.C. and Conte, H. (2021) Insecticidal Effect of Garlic Essential Oil on Diatraea saccharalis (Fabricius, 1794) (Lepidoptera: Crambidae) Eggs. Revista Ibero Americana de Ciências Ambientais, 12.
https://sustenere.co/index.php/rica/article/view/5836

[32]   Daquila, B.V., Dossi, F.C.A., Moi, D.A., Moreira, D.R., Caleffe, R.R.T., Pamphile, J.A. and Conte, H. (2021) Bioactivity of Bacillus thuringiensis (Bacillales: Bacillaceae) on Diatraea saccharalis (Lepidoptera: Crambidae) Eggs. Pest Management Science, 77, 2019-2028.
https://doi.org/10.1002/ps.6230

[33]   Schneider, L.C.L., Silva, C.V. and Conte, H. (2013) Infection, Colonization and Extrusion of Metarhizium anisopliae (Metsch) Sorokin (Deuteromycotina: Hyphomycetes) in Pupae of Diatraea saccharalis F. (Lepidoptera: Crambidae). Journal of Entomology and Nematology, 5, 1-9.
https://doi.org/10.5897/JEN12.015

[34]   Silva, C.V., Schneider, L.C.L. and Conte, H. (2013) Toxicity and Residual Activity of a Commercial Formulation of Oil from Neem, Azadirachta indica A. Juss. (Meliaceae), in the Embryonic Development of Diatraea saccharalis F. (Lepidoptera: Crambidae). Arquivos do Instituto Biológico, 4, Article No. 131.

[35]   Nogueira, M.R.S., Camargo, M.G., Rodrigues, C.J.B.C., Marciano, A.F., Quinelato, S., Freitas, M.C., Fiorotti, J., Sá, F.A., Perinotto, W.M.S. and Bittencourt. V.R.E.P. (2020) In Vitro Efficacy of Two Commercial Products of Metarhizium anisopliae s. l. for Controlling the Cattle Tick Rhipicephalus microplus. Revista Brasileira de Parasitologia Veterinária, 29, Article ID: e000220.
https://doi.org/10.1590/s1984-29612020035

[36]   Sullivan, C.F., Parker, B.L. Davari, A., Lee, M.R., Kim, J.S. and Skinner, M. (2020) Evaluation of Spray Applications of Metarhizium anisopliae, Metarhizium brunneum and Beauveria bassiana against Larval Winter Ticks, Dermacentor albipictus. Experimental and Applied Acarology, 82, 559-570.
https://doi.org/10.1007/s10493-020-00547-6

[37]   Minguely, C., Norgrove, L., Burren, A. and Christ, B. (2021) Biological Control of the Raspberry Eriophyoid Mite Phyllocoptes gracilis Using Entomopathogenic Fungi. Horticulturae, 7, Article No. 54.
https://doi.org/10.3390/horticulturae7030054

[38]   Youssef, M.M.A., El-Nagdi, W.M.A. and Lotfy, D.E.M. (2020) Evaluation of the fungal Activity of Beauveria bassiana, Metarhizium anisopliae and Paecilomyces lilacinus as Biocontrol Agents against Root-Knot Nematode, Meloidogyne incognita on Cowpea. Bulletin of the National Research Centre, 44, Article No. 112.
https://doi.org/10.1186/s42269-020-00367-z

[39]   Boucias, D.G., Pendlant, J.C. and Latge, J.P. (1991) Attachment of Mycopathogens to Cuticle: The Initial Event of Mycoses in Arthropod Hosts. In: Cole, G.T. and Hoch, H.C., Eds., The Fungal Spore and Disease Initiation in Plants and Animals, Springer, Boston, 101-127.
https://doi.org/10.1007/978-1-4899-2635-7_5

[40]   Samuels, R.I., Coracini, D.L.A., Santos, C.A.M. and Gava, C.A.T. (2002) Infection of Blissus antillus (Hemiptera: Lygaeidae) Eggs by the Entomopathogenic Fungi Metarhizium anisopliae and Beauveria bassiana. Biological Control, 23, 269-273.
https://doi.org/10.1006/bcon.2001.1009

[41]   Meadows, J., Gill, S.S. and Bone, L.W. (1989) Factors Influencing Lethality of Bacillus thuringiensis kurstaki Toxin for Eggs and Larvae of Trichostrongylus colubriformis (Nematoda). Journal of Parasitology, 75, 191-194.
https://doi.org/10.2307/3282765

[42]   Lamer, A. and Dorn, A. (2001) The Serosa of Manduca sexta (Insecta, Lepidoptera): Ontogeny, Secretory Activity, Structural Charges, and Functional Considerations. Tissue Cell, 33, 583-595.
https://doi.org/10.1054/tice.2001.0213

[43]   Jacobs, C.G.C., Spaink, H.P. and van-der-Zee, M. (2014) The Extraembryonic Serosa Is a Frontier Epithelium Providing the Insect Egg with a Full-Range Innate Immune Response. Elife, 3.
https://doi.org/10.7554/eLife.04111

[44]   Campbell, B.E. and Miller, D.M. (2015) Insecticide Resistance in Eggs and First Instars of the Bed Bug, Cimex lectularius (Hemiptera: Cimicidae). Insects, 6, 122-132.
https://doi.org/10.3390/insects6010122

[45]   Blum, M.S. and Hilker, M. (2008) Chemical Protection of Insect Eggs. In: Hilker, M. and Meiners, T., Eds., Chemoecology of Insect Eggs and Egg Deposition: An introduction, Blackwell, Berlin, 61-90.
https://doi.org/10.1002/9780470760253.ch3

[46]   Cônsoli, F.L., Kitajima, E.W. and Parra, J.R.P. (1999) Ultrastructure of the Natural and Factitious Host Eggs of Trichogramma galloi Zucchi and Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae). International Journal of Insect Morphology Embryology, 28, 211-231.
https://doi.org/10.1016/S0020-7322(99)00026-4

[47]   Mead, H.M., El-Shafiey, S.N. and Sabry, H.M. (2016) Chemical Constituents and Ovicidal Effects of mahlab, Prunus mahaleb L. Kernels Oil on Cotton Leafworm, Spodoptera littoralis (Boisd.) Eggs. Journal of Plant Protection Research, 56, 279-290.
https://doi.org/10.1515/jppr-2016-0044

[48]   Dossi, F.C.A., Conte, H. and Zacaro, A.A. (2006) Histochemical Characterization of the Embryonic Stages in Diatraea saccharalis (Lepidoptera: Crambidae). Annals of the Entomological Society of America, 99, 1206-1212.
https://doi.org/10.1603/0013-8746(2006)99[1206:HCOTES]2.0.CO;2

[49]   Martins-Parra, F., Figueiredo, V.L.C., Issa, M.R.C. and Almeida, R. (2016) Esterase pattern during the Ontogenetic Development of Diatraea saccharalis Fabr. (Lepidoptera: Pyralidae). Revista Saúde e Biologia, 11, 17-28.

[50]   Price, N.R. (1984) Carboxyesterase Degradation of Malathion in Vitro by Susceptible and Resistant Strains of Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae). Comparative Biochemistry and Physiology Part C: Comparative Pharmacology, 77, 95-98.
https://doi.org/10.1016/0742-8413(84)90136-1

[51]   Vieira, D.L., Souza, G.M.M., Oliveira, R., Barbosa, V.D.O., Batista, J.D.L. and Pereira, W.E. (2013) Aplicação de óleos comerciais no controle ovicida de Aleurocanthus woglumi Asbhy. Bioscience Journal, 29, 1126-1129.

[52]   Kanost, M.R. and Clem, R.J. (2012) Insect Proteases. In: Gilbert, L.I., Ed., Insect Molecular Biology and Biochemistry, Academic Press, San Diego, 346-364.
https://doi.org/10.1016/B978-0-12-384747-8.10010-8

[53]   Dubovskiy, I.M., Krukova, N.A. and Glupov, V.V. (2008) Phagocytic Activity and Encapsulation Rate of Galleria mellonella Larval Haemocytes during Bacterial Infection by Bacillus thuringiensis. Journal of Invertebrate Pathology, 98, 360-362.
https://doi.org/10.1016/j.jip.2008.03.011

[54]   Nakhleh, J., El-Moussawi, L. and Osta, M.A. (2017) The Melanization Response in Insect Immunity. In: Ligoxygakis, P., Ed. Advances Insect Physiology, Vol. 57, Academic Press, London, 83-109.
https://doi.org/10.1016/bs.aiip.2016.11.002

[55]   Maki, N. and Yamashita, O. (2001) The 30kP Protease A Responsible for 30-kDa Yolk Protein Degradation of the Silkworm, Bombyx mori: cDNA Structure, Developmental Change and Regulation by Feeding. Insect Biochemistry and Molecular Biology, 31, 407-413.
https://doi.org/10.1016/S0965-1748(00)00135-1

 
 
Top