[1] Agiza, H.N. (1999) On the Analysis of Stability, Bifurcation, Chaos and Chaos Control of Kopel Map. Chaos, Solitons & Fractals, 10, 1909-1916.
https://doi.org/10.1016/S0960-0779(98)00210-0
[2] Agiza, H.N., Hegazi, A.S. and Elsadany, A.A. (2002) Complex Dynamics and Synchronization of Duopoly Game with Bounded Rationality. Mathematics and Computers in Simulation, 58, 133-146.
https://doi.org/10.1016/S0378-4754(01)00347-0
[3] Agliar, A., Gardini, L. and Puu, T. (2005) Some Global Bifurcations Related to the Appearance of Closed Invariant Curves. Mathematics and Computers in Simulation, 68, 201-219.
https://doi.org/10.1016/j.matcom.2004.12.003
[4] Agliari, A., Gardini, L. and Puu, T. (2006) Global Bifurcations in Duopoly When the Cournot Point Is Destabilized via a Subcritical Neimark Bifurcation. International Game Theory Review, 8, 1-20.
https://doi.org/10.1142/S0219198906000758
[5] Bishi, G.I. and Kopel, M. (2001) Equilibrium Selection in a Nonlinear Duopoly Game with Adaptive Expectations. Journal of Economic Behavior & Organization, 46, 73-100.
https://doi.org/10.1016/S0167-2681(01)00188-3
[6] Kopel, M. (1996) Simple and Complex Adjustment Dynamics in Cournot Duopoly Models. Chaos, Solitons & Fractals, 7, 2031-2048.
https://doi.org/10.1016/S0960-0779(96)00070-7
[7] Puu, T. (1998) The Chaotic Duopolists Revisited. Journal of Economic Beahavior & Organization, 33, 385-394.
https://doi.org/10.1016/S0167-2681(97)00064-4
[8] Puu, T. (2005) Complex Oligopoly Dynamics. In: Lines, M., Ed., Nonlinear Dynamical Systems in Economics, Springer, New York, 165-186.
https://doi.org/10.1007/3-211-38043-4_6
[9] Sarafopoulos, G. (2015) On the Dynamics of a Duopoly Game with Differentiated Goods. Procedia Economics and Finance, 19, 146-153.
https://doi.org/10.1016/S2212-5671(15)00016-7
[10] Sarafopoulos, G. (2015) Complexity in a Duopoly Game with Homogeneous Players, Convex, Log-Linear Demand and Quadratic Cost Functions. Procedia Economics and Finance, 33, 358-366.
https://doi.org/10.1016/S2212-5671(15)01720-7
[11] Zhang, J., Da, Q. and Wang, Y. (2009) The Dynamics of Bertrand Model with Bounded Rationality. Chaos, Solitons and Fractals, 39, 2048-2055.
https://doi.org/10.1016/j.chaos.2007.06.056
[12] Agiza, H.N. and Elsadany, A.A. (2003) Nonlinear Dynamics in the Cournot Duopoly Game with Heterogeneous Players. Physica A, 320, 512-524.
https://doi.org/10.1016/S0378-4371(02)01648-5
[13] Agiza, H.N. and Elsadany, A.A. (2004) Chaotic Dynamics in Nonlinear Duopoly Game with Heterogenous Players. Applied Mathematics and Computation, 149, 843-860.
https://doi.org/10.1016/S0096-3003(03)00190-5
[14] Haan, W.J.D. (2001) The Importance of the Number of Different Agents in a Heterogeneous Asset—Pricing Model. Journal of Economic Dynamic and Control, 25, 721-746.
https://doi.org/10.1016/S0165-1889(00)00038-5
[15] Hommes, C.H. (2006) Heterogeneous Agent Models in Economics and Finance. In: Tesfatsion, L. and Judd, K.L., Eds., Handbook of Computational Economics, Agent-Based Computational Economics, Vol. 2, Elsevier Science B.V., Amsterdam, 1109-1186.
https://doi.org/10.1016/S1574-0021(05)02023-X
[16] Fanti, L. and Gori, L. (2012) The Dynamics of a Differentiated Duopoly with Quantity Competition. Economic Modelling, 29, 421-427.
https://doi.org/10.1016/j.econmod.2011.11.010
[17] Gao, Y. (2009) Complex Dynamics in Two Dimensional Noninvertible Map. Chaos Solitons & Fractals, 39, 1798-1810.
https://doi.org/10.1016/j.chaos.2007.06.051
[18] Sarafopoulos, G. and Papadopoulos, K. (2017) On a Cournot Duopoly Game with Differentiated Goods, Heterogeneous Expectations and a Cost Function Including Emission Costs. Scientific Bulletin—Economic Science, 16, 11-22.
https://econpapers.repec.org/article/ptsjournl/y_3a2017_3ai_3a1_3ap_3a11-22.htm
[19] Sarafopoulos, G. and Papadopoulos, K. (2019) Complexity in a Bertrand Duopoly Game with Heterogeneous Players and Differentiated Goods. In: Sykianakis, N., Polychronidou, P. and Karasavvoglou, A., Eds., Economic and Financial Challenges for Eastern Europe, Springer, Berlin, 15-26.
https://doi.org/10.1007/978-3-030-12169-3_2
[20] Sarafopoulos, G. and Papadopoulos, K. (2020) On a Bertrand Dynamic Game with Differentiated Goods, Heterogeneous Expectations and Asymmetric Cost Functions. In: Janowicz-Lomott, M., Łyskawa, K. and Polychronidou, P, Eds., Economic and Financial Challenges for Balkan and Eastern European Countries, Springer, Berlin, 223-241.
https://doi.org/10.1007/978-3-030-39927-6_14
[21] Tramontana, F. (2010) Heterogeneous Duopoly with Isoelastic Demand Function. Economic Modelling, 27, 350-357.
https://doi.org/10.1016/j.econmod.2009.09.014
[22] Zhang, J., Da, Q. and Wang, Y. (2007) Analysis of Nonlinear Duopoly Game with Heterogeneous Players. Economic Modelling, 24, 138-148.
https://doi.org/10.1016/j.econmod.2006.06.007
[23] Wu, W., Chen, Z. and Ip, W.H. (2010) Complex Nonlinear Dynamics and Controlling Chaos in a Cournot Duopoly Economic Model. Nonlinear Analysis: Real World Applications, 11, 4363-4377.
https://doi.org/10.1016/j.nonrwa.2010.05.022
[24] Baumol, W.J. and Quandt, R.E. (1964) Rules of Thumb and Optimally Imperfect Decisions. American Economic Review, 54, 23-46.
https://www.jstor.org/stable/1810896
[25] Singh, N. and Vives, X. (1984) Price and Quantity Competition in a Differentiated Duopoly. The RAND Journal of Economics, 15, 546-554.
https://doi.org/10.2307/2555525
[26] Puu, T. (1991) Chaos in Duopoly Pricing. Chaos, Solitons & Fractals, 1, 573-581.
https://doi.org/10.1016/0960-0779(91)90045-B
[27] Puu, T. (1995) The Chaotic Monopolist. Chaos, Solitons & Fractals, 5, 35-44.
https://doi.org/10.1016/0960-0779(94)00206-6
[28] Westerhoff, F. (2006) Nonlinear Expectation Formation, Endogenous Business Cycles and Stylized Facts. Studies in Nonlinear Dynamics and Econometrics, 10, Article No. 4.
https://doi.org/10.2202/1558-3708.1324
[29] Naimzada, A.K. and Ricchiuti, G. (2008) Complex Dynamics in a Monopoly with a Rule of Thumb. Applied Mathematics and Computation, 203, 921-925.
https://doi.org/10.1016/j.amc.2008.04.020
[30] Asksar, S.S. (2013) On Complex Dynamics of Monopoly Market. Economic Modelling, 31, 586-589.
https://doi.org/10.1016/j.econmod.2012.12.025
[31] Askar, S.S. (2014) Complex Dynamic Properties of Cournot Duopoly Games with Convex and Log-Concave Demand Function. Operations Research Letters, 42, 85-90.
https://doi.org/10.1016/j.orl.2013.12.006
[32] Elsadany, A. and Awad, A.M. (2016) Nonlinear Dynamics of Cournot Duopoly Game with Social Welfare. Electronic Journal of Mathematician Analysis and Applications, 4, 173-191.
http://math-frac.org/Journals/EJMAA/Vol4(2)_July_2016/Vol4(2)_Papers/16_EJMAA_Vol4(2)_July_2016_pp_173-191.pdf
[33] Naimzada, A.K. and Sbragia, L. (2006) Oilgopoly Games with Nonlinear Demand and Cost Functions: Two Boundedly Rational Adjustment Processes. Chaos, Solitons & Fractals, 29, 707-722.
https://doi.org/10.1016/j.chaos.2005.08.103
[34] Gandolfo, G. (1997) Economic Dynamics. Springer, Berlin.
https://www.springer.com/gp/book/9783642038624
[35] Elaydi, S. (2005) An Introduction to Difference Equations. 3rd Edition, Springer-Verlag, New York.
[36] Kulenovic, M. and Merino, O. (2002) Discrete Dynamical Systems and Difference Equations with Mathematica. Chapman & Hall/CRC, London.
https://doi.org/10.1201/9781420035353
[37] Vezeris, D., Schinas, C. and Papaschinopoulos, G. (2018) Profitability Edge by Dynamic Back Testing Optimal Period Selection Technical Parameters Optimization in Trading Systems with Forecasting. Computational Economics, 51, 761-807.
https://doi.org/10.1007/s10614-016-9640-x
[38] Vezeris, D., Schinas, C., Kyrgos, T., Bizergianidou, V. and Karkanis, I. (2019) Optimizations of Backtesting Techniques in Automated High Frequency Trading Systems Using the d-Backtest PS Method. Computational Economics, 56, 975-1054.
https://doi.org/10.1007/s10614-019-09956-1
[39] Vezeris, D., Kyrgos, T., Karkanis, I. and Bizergianidou, V. (2020) Automated Trading Systems’ Evaluation Using d-Backtest PS Method and WM Ranking in Financial Markets. Investment Management and Financial Innovations, 17, 198-215.
https://doi.org/10.21511/imfi.17(2).2020.16
[40] Sarafopoulos, G., Drimpetas, E., Papadopoulos, K. and Vezeris, D. (2021) Chaotic Behavior in Duopoly Market and Application of the d-Backtest Method. 14th Chaotic Modeling and Simulation International Conference CHAOS 2021, Athens, 8-11 June 2021.