[1] Drugmand, D. and Wauthy, G. (1992) Eléments de morphologie descriptive de l’exoet de l’endosquelette des Cryptobiina afrotropicaux (Coleoptera, Staphylinidae, Paederinae). Bulletin of Institute of Royal Science and Natural Entomology, 62, 5-31.
[2] Beatty, B. (1997) Biology of Diseases Vectors. The American Society of Tropical Medicine and Hygiene, Arlington, VA, 482 p.
[3] Carnevale, P., Robert, V., Manguin, S., Corbel, V., Fontenille, D., Garros, C. and Rogier, C. (2009) Les Anopheles: Biologie, Transmission du Paludisme et Lutte Antivectorielle. Institut de Recherche pour le Développement, Marseille, 403 p.
[4] WHO (2020) World Malaria Report 2020.
[5] Menze, B.D., Wondji, M.J., Tchapga, W., Tchoupo, M., Riveron, J.M. and Wondji, C.S. (2019) Bionomics and Insecticides Resistance Profiling of Malaria Vectors at a Selected Site for Experimental Hut Trials in Central Cameroon. Malaria Journal, 17, Article No. 317.
https://doi.org/10.1186/s12936-018-2467-2
[6] Ndo, C., Kopya, E., Donbou, M.A., Njiokou, F., Awono-Ambene, P. and Wondji, C.S. (2018) Elevated Plasmodium Infection Rates and High Pyrethroid Resistance in Major Malaria Vectors in a Forested Area of Cameroon Highlight Challenges of Malaria Control. Parasites & Vectors, 11, Article No. 157.
https://doi.org/10.1186/s13071-018-2759-y
[7] Cheong, S.P., Huang J., Bendena, W.G., Tobe, S.S. and Hui, J.H. (2015) Evolution of Ecdysis and Metamorphosis in Arthropods: The Rise of Regulation of Juvenile Hormone. Integrative and Comparative Biology, 55, 878-890.
https://doi.org/10.1093/icb/icv066
[8] Hervé, J.P. (1973) Les Hormones chez les insectes: Leur Utilisation dans la lutte contre les insectes d’intérêt médical.
[9] Holstein, M.H. (1954) Biology of Anopheles gambiae: Research in Western Africa. WHO, Geneva.
[10] Wigglesworth, V.B. (1934) Factors Controlling Moulting and ‘Metamorphosis’ in Insects. Nature, 133, 725-728.
https://doi.org/10.1038/133725b0
[11] Wigglesworth, V.B. (1940) The Determination of Characters at Metamorphosis in Rhodnius prolixus (Hemiptera). Journal of Experimental Biology, 17, 201-223.
https://doi.org/10.1242/jeb.17.2.201
[12] Tsila, H.G., Messi, J. and Foko Dadji, G.A. (2011) Adaptative Responses of Anopheles gambiae in Crowding Larvae Conditions in Laboratory. Asian Journal of Biological Sciences, 4, 259-265.
https://doi.org/10.3923/ajbs.2011.259.265
[13] Tchuinkam, T., Mpoame M., Make-Mveinhya, B., Simard, F., Lélé-Defo, E., Zébazé-Togouet, S., Tateng-Ngouateu, A., Awono-Ambéné, H.P., Antonio-Nkondjio, C., Njiné, T. and Fontenille, D. (2011) Optimization of Breeding Output for Larval Stage of Anopheles gambiae (Diptera: Culicidae): Prospects for the Creation and Maintenance of Laboratory Colony from Wild Isolates. Bulletin of Entomological Research, 101, 259-269.
https://doi.org/10.1017/S0007485310000349
[14] Tsila, H.G., Foko dadji, G.A., Messi, J., Tamesse, J.L. and Wabo Pone, J. (2015) Effect of the Larval Habitat Depth on the Fitness of the Malaria-Vector Mosquito, Anopheles gambiae s. s. Journal of Parasitology and Vector Biology, 7, 151-155.
[15] Dempster, J.P. (1961) The Analysis Data Obtained by Regular Sampling of Animal Insect Population. Journal of Animal Ecology, 30, 429-432.
https://doi.org/10.2307/2307
[16] Hamon, J., Adam, P. and Grjebine, A. (1956) Les Anophèles de l’Ouest de l’Afrique. Bulletin de l’Organisation Mondiale de la Santé, 15, 565-572.
[17] Van Handel, E. (1986) Growth of Three Mosquitoes on Two Larval Diets Measured by Protein Accumulation. Journal of the American Mosquito Control Association, 2, 289-291.
[18] Timmermann, S.E. and Briegel, H. (1993) Water Depth and Larval Density Affect Development Accumulation. Bulletin of the Society for Vector Ecology, 18, 174-187.
[19] Fish, D. and Carpenter, S.R. (1982) Leaf Litter and Larval Mosquito Dynamics in Tree-Hole Ecosystems. Ecology, 63, 283-288.
https://doi.org/10.2307/1938943
[20] Mauchamp, B. (1985) L’arrivée d’un premier déclencheur de mue comme régulateur de croissance chez les insectes. Insectes et Cultures, 98, 5-7.