Back
 CSTA  Vol.10 No.3 , August 2021
Effect of Chamber Conditions and Substrate Type on PECVD of SiGeSn Films
Abstract: In the past studies have shown that the addition of Ge and Sn into Si lattice to form SiGeSn enhances its carrier mobility and band-gap properties. Conventionally SiGeSn epitaxial films are grown using Ultra-High Vacuum (UHV) conditions with pressures ranging from 10-8 torr to 10-10 torr which makes high volume manufacturing very expensive. On the contrary, the use of low-pressure CVD processes (vacuum levels of 10-2 torr to 10-4 torr) is economically more viable and yields faster deposition of SiGeSn films. This study outlines the use of a cost-effective Plasma Enhanced Chemical Vapor Deposition (PECVD) reactor to study the impact of substrate temperature and substrate type on the growth and properties of polycrystalline SiGeSn films. The onset of polycrystallinity in the films is attributed to the oxygen-rich PECVD chamber conditions explained using the Volmer-Weber (3D island) mechanism. The properties of the films were characterized using varied techniques to understand the impact of the substrate on film composition, thickness, crystallinity, and strain.
Cite this paper: Hariharan, V. , Vanjaria, J. , Arjunan, A. , Tompa, G. and Yu, H. (2021) Effect of Chamber Conditions and Substrate Type on PECVD of SiGeSn Films. Crystal Structure Theory and Applications, 10, 39-56. doi: 10.4236/csta.2021.103004.
References

[1]   Alharthi, B., Dou, W., Grant, P.C., Grant, J.M., Morgan, T., Mosleh, A., et al. (2019) Low Temperature Epitaxy of High-Quality Ge Buffer Using Plasma Enhancement via UHV-CVD System for Photonic Device Applications. Applied Surface Science, 481, 246-254.
https://doi.org/10.1016/j.apsusc.2019.03.062

[2]   Hashemi, P., Ando, T., Balakrishnan, K., Koswatta, S., Lee, K.-L., Ott, J.A., et al. (2017) MoHigh Performance PMOS with Strained High-Ge-Content SiGe Fins for Advanced Logic Applications. 2017 International Symposium on VLSI Technology, Systems and Application, Hsinchu, 24-27 April 2017, Article ID: 16947461.
https://doi.org/10.1109/VLSI-TSA.2017.7942468

[3]   Polzer, A., Gaberl, W., Swoboda, R., Zimmermann, H., Fedeli, J.M. and Vivien, L. (2010) A 10 Gb/s Transimpendance Amplifier for Hybrid Integration of a Ge PIN Waveguide Photodiode. Silicon Photonics and Photonic Integrated Circuits II. 7719, Article ID: 77191N.
https://doi.org/10.1117/12.854312

[4]   Soref, R.A. and Perry, C.H. (1991) Predicted Band Gap of the New Semiconductor SiGeSn. Journal of Applied Physics, 69, 539-541.
https://doi.org/10.1063/1.347704

[5]   Sun, G., Soref, R.A. and Cheng, H.H. (2010) Design of an Electrically Pumped SiGeSn/GeSn/SiGeSn Double-Heterostructure Midinfrared Laser. Journal of Applied Physics, 108, Article ID: 033107.
https://doi.org/10.1063/1.3467766

[6]   Ranjan, R. and Das, M.K. (2016) Theoretical Estimation of Optical Gain in Tin-Incorporated Group IV Alloy-Based Transistor Laser. Optical and Quantum Electronics, 48, Article No. 201.
https://doi.org/10.1007/s11082-016-0459-4

[7]   Wang, H., Han, G., Liu, Y., Hu, S., Zhang, C., Zhang, J. and Hao, Y. (2016) Theoretical Investigation of Performance Enhancement in GeSn/SiGeSn Type-II Staggered Heterojunction Tunneling FET. IEEE Transactions on Electron Devices, 63, 303-310.
https://doi.org/10.1109/TED.2015.2503385

[8]   Shimura, Y., Iwamoto, K., Yokogawa, R., Tomita, M., Tatsuoka, H., Uchiyama, H. and Ogura, A. (2021) Thermal Conductivity and Inelastic X-Ray Scattering Measurements on SiGeSn Polycrystalline Alloy. Japanese Journal of Applied Physics, 60, Article No. SBBF11.
https://doi.org/10.35848/1347-4065/abdb83

[9]   Ozkan, C.S., Nix, W.D. and Gao, H. (1997) Strain Relaxation and Defect Formation in Heteroepitaxial Si1–xGex Films via Surface Roughening Induced by Controlled Annealing Experiments. Applied Physics Letters, 70, 2247-2249.
https://doi.org/10.1063/1.118819

[10]   Desjardins, P., Spila, T., Gurdal, O., Taylor, N. and Greene. J.E. (1999) Hybrid Surface Roughening Modes during Low-Temperature Heteroepitaxy: Growth of Fully Strained Metastable Ge1–xSix Alloys on Ge(001)2×1. Physics Review B, 60, 15993-15998.
https://doi.org/10.1103/PhysRevB.60.15993

[11]   Fleurial, J.P. and Borshchevsky, A. (1990) Si-Ge-Metal Ternary Phase Diagram Calculations. Journal of the Electrochemical Society, 137, Article No. 2928.
https://doi.org/10.1149/1.2087101

[12]   Wirths, S., Buca, D. and Mantl, S. (2016) Si-Ge-Sn Alloys: From Growth to Applications. Progress in Crystal Growth and Characterization of Materials, 62, 1-39.
https://doi.org/10.1016/j.pcrysgrow.2015.11.001

[13]   Zheng, J., Wang, S., Zhou, T., Zuo, Y., Cheng, B. and Wang, Q. (2015) Single-Crystalline Ge1–x–ySix Sny Alloys on Si (100) Grown by Magnetron Sputtering. Optical Materials Express, 5, 287-294.
https://doi.org/10.1364/OME.5.000287

[14]   Fisher, I., Wendav, T., Augel, L., Jitpakdeebodin, S., Oliveira, F., Benedetti, A. and Stefanov, S. (2015) Growth and Characterization of SiGeSn Quantum Well Photodiodes. Optics Express, 23, 25048-25057.
https://doi.org/10.1364/OE.23.025048

[15]   Asano, T., Terashima, T., Yamaha, T., Kurosawa, M., Takeuchi, W., Taoka, N., Nakatsuka, O. and Zaima, S. (2014) Epitaxial Growth and Crystalline Properties of Ge1–x–ySixSny Ternary Alloys. 2014 7th International Silicon-Germanium Technology and Device Meeting (ISTDM), 110, 159-160.

[16]   Shimura, Y., Asano, T., Yamaha, T., Fukuda, M., Takeuchi, W., Nakatsuka, O. and Zaima, S. (2017) EXAFS Study of Local Structure Contributing to Sn Stability in SiyGe1–y–zSnz. Materials Science in Semiconductor Processing, 70, 133-138.
https://doi.org/10.1016/j.mssp.2016.11.013

[17]   Talochkin, A.B., Timofeev, V.A., Gutakovskii, A.K. and Mashanov, V.I. (2017) Sn-Inbduced Decomposition of SiGeSn Alloys Grown on Si by Molecular Beam Epitaxy. Journal of Crystal Growth, 478, 205-211.
https://doi.org/10.1016/j.jcrysgro.2017.09.005

[18]   Margetis, J., Ghetmiri, S.A., Du, W., Conley, B.R., Mosleh, A., Soref, R., Sun, G., Domulevicz, L., Naseem, H.A. and Yu, S.-Q. (2014) Growth and Characterization of Epitaxial Ge1–xSnx Alloys and Heterostructures Using a Commercial CVD System. ECS Transactions, 64, 711-720.
https://doi.org/10.1149/06406.0711ecst

[19]   Mosleh, A., Ghetmiri, S.A., Conley, B.R., Hawkridge, M., Benamara, M., Nazzal, A., Tolle, J., Yu, S.-Q. and Naseem, H.A. (2014) Material Characterization of Ge1-xSnx Alloys Grown by a Commercial CVD System for Optoelectronic Device Applications. Journal of Electronic Materials, 43, 938-946.
https://doi.org/10.1007/s11664-014-3089-2

[20]   Bauer, M., Ritter, C., Crozier, P.A., Ren, J., Menendez, J., Wolf, G. and Kouvetakis, J. (2003) Synthesis of Ternary SiGeSn Semiconductors on Si (100) via SnxGe1–x Buffer Layers. Applied Physics Letters, 83, 2163-2165.
https://doi.org/10.1063/1.1606104

[21]   D’Costa, V.R, Tolle, J., Poweleit, C.D., Kouvetakis, J. and Menendez, J. (2007) Compositional Dependence of Raman Frequencies in Ternary Ge1–x–ySixSny Alloys. Physical Review B: Condensed Matter and Materials Physics, 76, Article ID: 035211.

[22]   Gallaghar, J.D., Xu, C., Jiang, L., Kouvetakis, J. and Menendez, J. (2013) Fundamental Band Gap and Direct-Indirect Crossover in Ge1–x–ySixSny. Applied Physics Letters, 103, Article ID: 202104.
https://doi.org/10.1063/1.4829621

[23]   Kouvetakis, J., Tolle, J., Matthews, J., Roucka, R. and Menendez, J. (2010) Si-Ge-Sn Technologies: From Molecules to Materials to Prototype Devices. ECS Transactions, 33, 615-628.
https://doi.org/10.1149/1.3487592

[24]   Mosleh, A., Alher, M., Cousar, L., Du, W., Ghetmiri, S.A., Pham, T., et al. (2015) Direct Growth of Ge1–xSnx Films on Si Using a Cold-Wall Utra-High Vacuum Chemical-Vapor-Deposition System. Frontiers in Materials, 2, Article No. 30.
https://doi.org/10.3389/fmats.2015.00030

[25]   Mosleh, A., Alher, M., Du, W. and Cousar, L. (2016) SiyGe1–x–ySnx Films Grown on Si Using a Cold-Wall Ultrahigh-Vacuum Chemical Vapor Deposition System. Journal of Vacuum Science & Technology B, 34, Article No. 011201.
https://doi.org/10.1116/1.4936892

[26]   Rouchka, R., Clark, A., Wilson, T., Thomas, T., Fuhrer, M., Ekins-Daukes, N., Johnson, A., Hoffman, R. and Begarney, D. (2016) Demonstrating Dilute-Tin Alloy SiGeSn for Use in Multijunction Photovoltaics. IEEE Journal of Photovoltaics, 6, 1025-1030.
https://doi.org/10.1109/JPHOTOV.2016.2559785

[27]   Vanjaria, J., Arjunan, A.C., Wu, Y., Tompa, G.S. and Yu, H. (2020) Epitaxial Ge Thin Film Growth on Si Using a Cost-Effective Process in Simplified CVD Reactor. ECS Journal of Solid State Science and Technology, 9, Article ID: 034008.
https://doi.org/10.1149/2162-8777/ab80b0

[28]   Banihashemian, S.F., Grant, J.M., Sabbar, A., Tran, H., Olorunsola, O., Ojo, S., Amoah, S., Mehboudi, M., Yu, S.-Q., Mosleh, A. and Naseem, H.A. (2020) Growth and Characterization of Low-Temperature Si1–xSnx on Si Using Plasma Enhanced Chemical Vapor Deposition. Optical Materials Express, 10, 2242-2253.
https://doi.org/10.1364/OME.398958

[29]   Vanjaria, J., Arjunan, A.C., Salagaj, T., Tompa, G.S., Yang, H., Houghton, T. and Yu, H. (2020) Growth of SiGeSn Thin Films Using Simplified PECVD Reactor towards NIR Sensor Devices. ECS Journal of Solid State Science and Technology, 9, Article ID: 074001.
https://doi.org/10.1149/2162-8777/abaeb2

[30]   Vanjaria, J., Arjunan, A.C., Salagaj, T., Tompa, G.S. and Yu, H. (2020) PECVD Growth of Composition Graded SiGeSn Thin Films as Novel Approach to Limit Tin Segregation. ECS Journal of Solid State Science and Technology, 9, Article ID: 034009.
https://doi.org/10.1149/2162-8777/ab80af

[31]   Wang, L., Zhang, Y., Sun, H., You, J., Miao, Y., Dong, Z., Liu, T., Jiang, Z. and Hu, H. (2021) Nanoscale Growth of a Sn-Guided SiGeSn Alloy on Si (111) Substrates by Molecular Beam Epitaxy. Nanoscale Advance, 3, 997-1004.
https://doi.org/10.1039/D0NA00680G

[32]   Friesen, C. and Thompson, C.V. (2002) Reversible Stress Relaxation during Precoalescence Interruptions of Volmer-Weber Thin Film Growth. Physical Review Letters, 89, Article ID: 126103.
https://doi.org/10.1103/PhysRevLett.89.126103

[33]   Lozovoy, K.A., Kokhanenko, A.P., Dirko, V.V., Akimenko, N.Yu. and Voitsekhovskii, A.V. (2019) Evolution of Epitaxial Quantum Dots Formed by Volmer-Weber Growth Mechanism. Crystal Growth & Design, 19, 7015-7021.
https://doi.org/10.1021/acs.cgd.9b00820

[34]   Miglio, L. and Sassella, A. (2005) Epitaxy. In: Bassani, F., Liedl, G.L. and Wyder, P., Eds., Encyclopedia of Condensed Matter Physics, Academic Press, Cambridge, 157-166.
https://doi.org/10.1016/B0-12-369401-9/00692-6

[35]   Park, Y., King, G.C. and Choi, S.H. (2008) Rhombohedral Epitaxy of Cubic SiGe on Trigonal C-Plane Sapphire. Journal of Crystal Growth, 310, 2724-2731.
https://doi.org/10.1016/j.jcrysgro.2008.02.010

[36]   Kim, H.J., Park, Y., Bae, H.B. and Choi, S.H. (2015) High-Electron-Mobility SiGe on Sapphire Substrate for Fast Chipsets. Advances in Condensed Matter Physics, 2015, Article ID: 785415.
https://doi.org/10.1155/2015/785415

[37]   Lager, G.A., Jorgensen, J.D. and Rotella, F.J. (1982) Crystal Structure and Thermal Expansion of α-Quartz SiO2 at Low Temperatures. Journal of Applied Physics, 53, 6751-6756.
https://doi.org/10.1063/1.330062

[38]   Ohmura, T., Yamaha, T., Kurosawa, M., Takeuchi, W., Sakashita, M., Taoka, N., Nakatsuka, O. and Zaima, S. (2015) Mobility Behavior of Polycrystalline Si1–x–yGexSny Grown on Insulators. Transactions of the Materials Research Society of Japan, 40, 351-354.
https://doi.org/10.14723/tmrsj.40.351

[39]   Zhu, J.G., White, C.W., Budai, J.D., Withrow, S.P. and Chen, Y. (1995) Growth of Ge, Si and SiGe Nanocrystals in SiO2 Matrix. Journal of Applied Physics, 78, 4386-4389.
https://doi.org/10.1063/1.359843

[40]   Olivares, J., Rodriguez, A., Sangrador, J., Rodriguez, T., Ballesteros, C. and Kling, A. (1999) Solid-Phase Crystallization of Amorphous SiGe Films Deposited by LPCVD on SiO2 and Glass. Thin Solid Films, 337, 51-54.
https://doi.org/10.1016/S0040-6090(98)01388-1

[41]   Yamaha, T., Kurosawa, M., Ohmura, T., Takeuchi, W., Taoka, N., Nakatsuka, O. and Zaima, S. (2015) Effect of Sn on Crystallinity and Electronic Property of Low Temperature Grown Polycrystalline Si1–x–yGexSny Layers on SiO2. Solid State Electronics, 110, 54-58.
https://doi.org/10.1016/j.sse.2015.01.005

 
 
Top