Back
 OJCM  Vol.11 No.4 , October 2021
Chemical Modification on Woven Jute and Nonwoven Wet-Laid Glass Fiber Sheet Reinforced Poly-(ε-Caprolactone) Composites
Abstract: High-moisture regains nature of cellulosic fibers considered one of the critical drawbacks for jute-based applications. To minimize this by developing better interfacial adhesion, a hydrophobic nonwoven wet-laid glass fiber sheet used the woven jute fabric in this experiment. For this purpose, woven jute fabric was categorized into untreated, silane, alkali, and alkali-silane combined treatment then compounded with the solution of polycaprolactone (PCL). Fabrication of composites performed the following sandwich method based on different hot-pressing time with temperature for detecting a prominent fabrication parameter. Surface treated jute fibers characterized using FTIR spectroscopy. Hence, the mechanical and thermal properties of composites were investigated to find the consequence of chemical treatments into woven jute fabric. Alkali-silane combined chemical treatments resulting in improved 48.38% of tensile strength over untreated optimized composites. Scanning electron microscope (SEM) used for displaying interfacial adhesion between fiber and polymer matrix. Besides, further investigation demonstrated due to the combined chemical treatment of alkali-silane optimized composites significantly enhanced the thermogravimetric (TGA) stability in contrast to other composites.
Cite this paper: Muzammel Hossen, M. and Obaidur Rahman, M. (2021) Chemical Modification on Woven Jute and Nonwoven Wet-Laid Glass Fiber Sheet Reinforced Poly-(ε-Caprolactone) Composites. Open Journal of Composite Materials, 11, 63-81. doi: 10.4236/ojcm.2021.114006.
References

[1]   Arbelaiz, A., Fernández, B., Valea, A. and Mondragon, I. (2006) Mechanical Properties of Short Flax Fibre Bundle/Poly (ε-Caprolactone) Composites: Influence of Matrix Modification and Fibre Content. Carbohydrate Polymers, 64, 224-232.
https://doi.org/10.1016/j.carbpol.2005.11.030

[2]   Sarasini, F., Tirillò, J., Puglia, D., Dominici, F., Santulli, C., Boimau, K., et al. (2017) Biodegradable Polycaprolactone-Based Composites Reinforced with Ramie and Borassus Fibres. Composite Structures, 167, 20-29.
https://doi.org/10.1016/j.compstruct.2017.01.071

[3]   Rafiquzzaman, M., Islam, M., Rahman, H., Talukdar, S. and Hasan, N. (2016) Mechanical Property Evaluation of Glass-Jute Fiber Reinforced Polymer Composites. Polymers for Advanced Technologies, 27, 1308-1316.
https://doi.org/10.1002/pat.3798

[4]   Cheung, H.-Y., Ho, M.-P., Lau, K.-T., Cardona, F. and Hui, D. (2009) Natural Fibre-Reinforced Composites for Bioengineering and Environmental Engineering Applications. Composites Part B: Engineering, 40, 655-663.
https://doi.org/10.1016/j.compositesb.2009.04.014

[5]   Chen, Y., Chiparus, O., Sun, L., Negulescu, I., Parikh, D.V. and Calamari, T.A. (2005) Natural Fibers for Automotive Nonwoven Composites. Journal of Industrial Textiles, 35, 47-62.
https://doi.org/10.1177/1528083705053392

[6]   Plackett, D., Andersen, T.L., Pedersen, W.B. and Nielsen, L. (2003) Biodegradable Composites Based on L-Polylactide and Jute Fibres. Composites Science and Technology, 63, 1287-1296.
https://doi.org/10.1016/S0266-3538(03)00100-3

[7]   Hassan, M.L. (2003) Recycling of Jute Textile in Phenol Formaldehyde-Jute Composites. Journal of Applied Polymer Science, 90, 3588-3593.
https://doi.org/10.1002/app.13066

[8]   Luckachan, G.E. and Pillai, C. (2011) Biodegradable Polymers—A Review on Recent Trends and Emerging Perspectives. Journal of Polymers and the Environment, 19, 637-676.
https://doi.org/10.1007/s10924-011-0317-1

[9]   Dong, Y., Ghataura, A., Takagi, H., Haroosh, H.J., Nakagaito, A.N. and Lau, K.-T. (2014) Polylactic Acid (PLA) Biocomposites Reinforced with Coir Fibres: Evaluation of Mechanical Performance and Multifunctional Properties. Composites Part A: Applied Science and Manufacturing, 63, 76-84.
https://doi.org/10.1016/j.compositesa.2014.04.003

[10]   Xia, X., Liu, W., Zhou, L., Hua, Z., Liu, H. and He, S. (2016) Modification of Flax Fiber Surface and Its Compatibilization in Polylactic Acid/Flax Composites. Iranian Polymer Journal, 25, 25-35.
https://doi.org/10.1007/s13726-015-0395-3

[11]   Orue, A., Jauregi, A., Peña-Rodriguez, C., Labidi, J., Eceiza, A. and Arbelaiz, A. (2015) The Effect of Surface Modifications on Sisal Fiber Properties and Sisal/Poly (Lactic Acid) Interface Adhesion. Composites Part B: Engineering, 73, 132-138.
https://doi.org/10.1016/j.compositesb.2014.12.022

[12]   Luo, S. and Netravali, A. (1999) Interfacial and Mechanical Properties of Environment-Friendly “Green” Composites Made from Pineapple Fibers and Poly (Hydroxybutyrate-Co-Valerate) Resin. Journal of Materials Science, 34, 3709-3719.
https://doi.org/10.1023/A:1004659507231

[13]   Debeli, D.K. (2019) Diammonium Phosphate-Modified Ramie Fiber Reinforced Polylactic Acid Composite and Its Performances on Interfacial, Thermal, and Mechanical Properties. Journal of Natural Fibers, 16, 342-356.
https://doi.org/10.1080/15440478.2017.1423255

[14]   Sawpan, M.A., Pickering, K.L. and Fernyhough, A. (2012) Flexural Properties of Hemp Fibre Reinforced Polylactide and Unsaturated Polyester Composites. Composites Part A: Applied Science and Manufacturing, 43, 519-526.
https://doi.org/10.1016/j.compositesa.2011.11.021

[15]   Huda, M.S., Drzal, L.T., Mohanty, A.K. and Misra, M. (2008) Effect of Fiber Surface-Treatments on the Properties of Laminated Biocomposites from Poly (Lactic Acid) (PLA) and Kenaf Fibers. Composites Science and Technology, 68, 424-432.
https://doi.org/10.1016/j.compscitech.2007.06.022

[16]   Wang, H., Memon, H., Hassan, E.A.M., Sohag Miah, Md. and Arshad Ali, Md. (2019) Effect of Jute Fiber Modification on Mechanical Properties of Jute Fiber Composite. Materials, 12, Article No. 1226.
https://doi.org/10.3390/ma12081226

[17]   Palanikumar, K., Ramesh, M. and Hemachandra Reddy, K. (2016) Experimental Investigation on the Mechanical Properties of Green Hybrid Sisal and Glass Fiber Reinforced Polymer Composites. Journal of Natural Fibers, 13, 321-331.
https://doi.org/10.1080/15440478.2015.1029192

[18]   Khan, R.A., Sharmin, N., Khan, M.A., Das, A.K., Dey, K., Saha, S., et al. (2011) Comparative Studies of Mechanical and Interfacial Properties between Jute Fiber/PVC and E-Glass Fiber/PVC Composites. Polymer-Plastics Technology and Engineering, 50, 153-159.
https://doi.org/10.1080/03602559.2010.531422

[19]   Jarukumjorn, K. and Suppakarn, N. (2009) Effect of Glass Fiber Hybridization on Properties of Sisal Fiber-Polypropylene Composites. Composites Part B: Engineering, 40, 623-627.
https://doi.org/10.1016/j.compositesb.2009.04.007

[20]   Muthuvel, M., Ranganath, G. and Janarthanan, K. (2013) Characterization Study of Jute and Glass Fiber Reinforced Hybrid Composite Material. International Journal of Engineering Research & Technology, 2, 335-344.

[21]   Velmurugan, R. and Manikandan, V. (2007) Mechanical Properties of Palmyra/Glass Fiber Hybrid Composites. Composites Part A: Applied Science and Manufacturing, 38, 2216-2226.
https://doi.org/10.1016/j.compositesa.2007.06.006

[22]   Huq, T., Khan, A., Noor, N., Saha, M., Khan, R.A. and Khan, M.A. (2010) Comparative Studies on the Mechanical, Degradation and Interfacial Properties between Jute and E-Glass Fiber-Reinforced PET Composites. Polymer-Plastics Technology and Engineering, 49, 1128-1135.
https://doi.org/10.1080/03602559.2010.496396

[23]   Boopalan, M., Niranjanaa, M. and Umapathy, M. (2013) Study on the Mechanical Properties and Thermal Properties of Jute and Banana Fiber Reinforced Epoxy Hybrid Composites. Composites Part B: Engineering, 51, 54-57.
https://doi.org/10.1016/j.compositesb.2013.02.033

[24]   Gowda, T.M., Naidu, A. and Chhaya, R. (1999) Some Mechanical Properties of Untreated Jute Fabric-Reinforced Polyester Composites. Composites Part A: applied science and manufacturing, 30, 277-284.
https://doi.org/10.1016/S1359-835X(98)00157-2

[25]   George, J., Sreekala, M. and Thomas, S. (2001) A Review on Interface Modification and Characterization of Natural Fiber Reinforced Plastic Composites. Polymer Engineering & Science, 41, 1471-1485.
https://doi.org/10.1002/pen.10846

[26]   Nam, T.H., Ogihara, S., Tung, N.H. and Kobayashi, S. (2011) Effect of Alkali Treatment on Interfacial and Mechanical Properties of Coir Fiber Reinforced Poly (Butylene succinate) Biodegradable Composites. Composites Part B: Engineering, 42, 1648-1656.
https://doi.org/10.1016/j.compositesb.2011.04.001

[27]   Zhang, L., Sun, Z., Liang, D., Lin, J. and Xiao, W. (2017) Preparation and Performance Evaluation of PLA/Coir Fibre Biocomposites. BioResources, 12, 7349-7362.

[28]   Goriparthi, B.K., Suman, K. and Rao, N.M. (2012) Effect of Fiber Surface Treatments on Mechanical and Abrasive Wear Performance of Polylactide/Jute Composites. Composites Part A: Applied Science and Manufacturing, 43, 1800-1808.
https://doi.org/10.1016/j.compositesa.2012.05.007

[29]   Gassan, J. and Bledzki, A.K. (1997) Effect of Moisture Content on the Properties of Silanized Jute-Epoxy Composites. Polymer Composites, 18, 179-184.
https://doi.org/10.1002/pc.10272

[30]   Wang, X., Wang, L., Ji, W., Hao, Q., Zhang, G. and Meng, Q. (2019) Characterization of KH-560-Modified Jute Fabric/Epoxy Laminated Composites: Surface Structure, and Thermal and Mechanical Properties. Polymers, 11, Article No. 769.
https://doi.org/10.3390/polym11050769

[31]   Debeli, D.K., Qin, Z. and Guo, J. (2018) Study on the Pre-Treatment, Physical and Chemical Properties of Ramie Fibers Reinforced Poly (Lactic Acid) (PLA) Biocomposite. Journal of Natural Fibers, 15, 596-610.
https://doi.org/10.1080/15440478.2017.1349711

[32]   John, M.J., Francis, B., Varughese, K.T. and Thomas, S. (2008) Effect of Chemical Modification on Properties of Hybrid Fiber Biocomposites. Composites Part A: Applied Science and Manufacturing, 39, 352-363.
https://doi.org/10.1016/j.compositesa.2007.10.002

[33]   Beijing FRP Research Institute (2005) Fiber-Reinforced Plastics Composites-Determination of Tensile Properties. GB/T 1447-2005, General Administration of Quality Supervision, Inspection and Quarantine of the People Republic of China, China National Standardization Administration Committee, Beijing.
https://www.chinesestandard.net/PDF/English.aspx/GBT1447-2005.

[34]   Baillie, C. (2004) Green Composites: Polymer Composites and the Environment. CRC Press, Boca Raton.

[35]   Saw, S.K., Akhtar, K., Yadav, N. and Singh, A.K. (2014) Hybrid Composites Made from Jute/Coir Fibers: Water Absorption, Thickness Swelling, Density, Morphology, and Mechanical Properties. Journal of Natural Fibers, 11, 39-53.
https://doi.org/10.1080/15440478.2013.825067

[36]   Gañán, P., Zuluaga, R., Restrepo, A., Labidi, J. and Mondragon, I. (2008) Plantain Fibre Bundles Isolated from Colombian Agro-Industrial Residues. Bioresource Technology, 99, 486-491.
https://doi.org/10.1016/j.biortech.2007.01.012

[37]   Haque, M.M., Hasan, M., Saiful Islam, Md. and Ershad Ali, Md. (2009) Physico-Mechanical Properties of Chemically Treated Palm and Coir Fiber Reinforced Polypropylene Composites. Bioresource Technology, 100, 4903-4906.
https://doi.org/10.1016/j.biortech.2009.04.072

[38]   Hossain, M.K., Dewan, M.W., Hosur, M. and Jeelani, S. (2011) Mechanical Performances of Surface Modified Jute Fiber Reinforced Biopol Nanophased Green Composites. Composites Part B: Engineering, 42, 1701-1707.
https://doi.org/10.1016/j.compositesb.2011.03.010

[39]   Saha, P., Manna, S., Chowdhury, S.R., Sen, R., Roy, D. and Adhikari, B. (2010) Enhancement of Tensile Strength of Lignocellulosic Jute Fibers by Alkali-Steam Treatment. Bioresource Technology, 101, 3182-3187.
https://doi.org/10.1016/j.biortech.2009.12.010

[40]   Khan, M.A. and M.M. Hassan (2006) Effect of γ-Aminopropyl Trimethoxy Silane on the Performance of Jute-Polycarbonate Composites. Journal of Applied Polymer Science, 100, 4142-4154.
https://doi.org/10.1002/app.23441

[41]   Hong, C., Hwang, I., Kim, N., Park, D.H., Hwang, B.S. and Nah, C. (2008) Mechanical Properties of Silanized Jute-Polypropylene Composites. Journal of Industrial and Engineering Chemistry, 14, 71-76.
https://doi.org/10.1016/j.jiec.2007.07.002

[42]   Jawaid, M., Abdul Khalil, H.P.S., Noorunnisa Khanam, P. and Abu Bakar, A. (2011) Hybrid Composites Made from Oil Palm Empty Fruit Bunches/Jute Fibres: Water Absorption, Thickness Swelling and Density Behaviours. Journal of Polymers and the Environment, 19, 106-109.
https://doi.org/10.1007/s10924-010-0203-2

[43]   Munoz, E. and García-Manrique, J.A. (2015) Water Absorption Behaviour and Its Effect on the Mechanical Properties of Flax Fibre Reinforced Bioepoxy Composites. International Journal of Polymer Science, 2015, Article ID: 390275.
https://doi.org/10.1155/2015/390275

[44]   Khalil, H.A., Issam, A.M., Ahmad Shakri, M.T., Suriani, R. and Awang, A.Y. (2007) Conventional Agro-Composites from Chemically Modified Fibres. Industrial Crops and Products, 26, 315-323.
https://doi.org/10.1016/j.indcrop.2007.03.010

[45]   Sari, P., Spatenka, P., Jenikova, Z., Grohens, Y. and Thomas, S. (2015) New Type of Thermoplastic Bio Composite: Nature of the Interface on the Ultimate Properties and Water Absorption. RSC Advances, 5, 97536-97546.
https://doi.org/10.1039/C5RA16311K

[46]   Mohammed, L., Ansari, M.N.M., Pua, G., Jawaid, M. and Saiful Islam, M. (2015) A Review on Natural Fiber Reinforced Polymer Composite and Its Applications. International Journal of Polymer Science, 2015, Article: ID 243947.
https://doi.org/10.1155/2015/243947

[47]   Farhadinejad, Z., Ehsani, M., Khosravian, B. and Ebrahimi, G. (2012) Study of Thermal Properties of Wood Plastic Composite Reinforced with Cellulose Micro Fibril and Nano Inorganic Fiber Filler. European Journal of Wood and Wood Products, 70, 823-828.
https://doi.org/10.1007/s00107-012-0630-y

[48]   de Oliveira Aguiar, V. and de Fatima Vieira Marques, M. (2016) Composites of Polycaprolactone with Cellulose Fibers: Morphological and Mechanical Evaluation. Macromolecular Symposia, 367, 101-112.
https://doi.org/10.1002/masy.201500142

[49]   Rosa, M.F., Chiou, B.-S., Medeiros, E.S., Wood, D.F., Williams, T.G., Mattoso, L.H.C., et al. (2009) Effect of Fiber Treatments on Tensile and Thermal Properties of Starch/Ethylene Vinyl Alcohol Copolymers/Coir Biocomposites. Bioresource Technology, 100, 5196-5202.
https://doi.org/10.1016/j.biortech.2009.03.085

[50]   Kabir, M., Wang, H., Lau, K.T., Cardona, F. and Aravinthan, T. (2012) Mechanical Properties of Chemically-Treated Hemp Fibre Reinforced Sandwich Composites. Composites Part B: Engineering, 43, 159-169.
https://doi.org/10.1016/j.compositesb.2011.06.003

 
 
Top