[1] Azouna, N.B., Berraeis, L., Regaya, Z. and Jenhani, F. (2011) Immunophenotyping of Hematopoietic Progenitor Cells: Comparison between Cord Blood and Adult Mobilized Blood Grafts. World Journal of Stem Cells, 3, 104-112.
https://doi.org/10.4252/wjsc.v3.i11.104
[2] Srivastava, B.I.S. (1974) Deoxynucleotide-Polymerizing Enzymes in Normal and Malignant Human Cells. Cancer Research, 34, 1015-1026.
[3] Haruna, T. and Atsushi, T. (2019) Age-Dependent Modification of Intracellular Zn2+ Buffering in the Hippocampus and Its Impact. Biological and Pharmaceutical Bulletin, 42, 1070-1075.
https://doi.org/10.1248/bpb.b18-00631
[4] Spigelman, Z., Duff, R., Beardsley, G.P., Broder, S., Cooney, D., Landau, N.R., et al. (1988) 2’,3’-Dideoxyadenosine Is Selectively Toxic for TdT-Positive Cells. Blood, 71, 1601-1608.
https://doi.org/10.1182/blood.V71.6.1601.1601
[5] Zhang, Y., Shi, M., Wen, Q., Luo, W., Yang, Z., Zhou, M., et al. (2012) Antigenic Stimulation Induces Recombination Activating Gene 1 and Terminal Deoxynucleotidyl Transferase Expression in a Murine T-Cell Hybridoma. Cellular Immunology, 274, 19-25.
https://doi.org/10.1016/j.cellimm.2012.02.008
[6] McElhinny, S.A.N. and Ramsden, D.A. (2003) Polymerase Mu Is a DNA-Directed DNA/RNA Polymerase. Molecular and Cellular Biology, 23, 2309-2315.
https://doi.org/10.1128/MCB.23.7.2309-2315.2003
[7] Motea, E.A. and Berdis, A.J. (2010) Terminal Deoxynucleotidyl Transferase: The Story of a Misguided DNA Polymerase. Biochimica et Biophysica Acta (BBA)—Proteins and Proteomics, 1804, 1151-1166.
https://doi.org/10.1016/j.bbapap.2009.06.030
[8] Nagler, M., Insam, H., Pietramellara, G. and Ascher-Jenull, J. (2018) Extracellular DNA in Natural Environments: Features, Relevance and Applications. Applied Microbiology and Biotechnology, 102, 6343-6356.
https://doi.org/10.1007/s00253-018-9120-4
[9] Zhivotovsky, B. (2020) Programmed Cell Death: Historical Notes from Russia. Biochemistry (Moscow), 85, 1127-1133.
https://doi.org/10.1134/S0006297920100016
[10] Sheehy, E.J., Vinardell, T., Toner, M.E., Buckley, C.T. and Kelly, D.J. (2014) Altering the Architecture of Tissue Engineered Hypertrophic Cartilaginous Grafts Facilitates Vascularisation and Accelerates Mineralisation. PLoS ONE, 9, e90716.
https://doi.org/10.1371/journal.pone.0090716
[11] Davila, C. and Charles, P. (1965) The Chromatography of Nucleic Acid Preparations on Deae-Cellulose Paper: I. Fractionation of Deoxyribonucleic Acid on Paper Strips or Centrifuged Paper Pulp. Journal of Chromatography A, 19, 382-395.
https://doi.org/10.1016/S0021-9673(01)99474-9
[12] Doppler-Bernardi, F. and Felsenfeld, G. (1969) In Vitro Incorporation of Tritium into Native DNA. Biopolymers, 8, 733-741.
https://doi.org/10.1002/bip.1969.360080604
[13] Shutko, A.N. and Shatinina, N.N. (1974) Effect of the Degree of Polymerization of Exogenous DNA on Its Incorporation into Rat Thymocytes in Vitro. Bulletin of Experimental Biology and Medicine, 77, 269-271.
https://doi.org/10.1007/BF00802476
[14] Sefton, B.M. (2001) Labeling Cultured Cells with 32Pi and Preparing Cell Lysates for Immunoprecipitation. Current Protocols in Protein Science, 10, 13.2.1-13.2.8.
https://doi.org/10.1002/0471140864.ps1302s10
[15] Shutko, A.N., Shatinina, N.N. and Rakitianskaia, I.A. (1983) Role of Terminal Deoxyri-bonucleotidyl Transferase in Stimulating Lymphocyte DNA Synthesis as Affected by PHA. Tsitologiia, 25, 1212-1215. (In Russian)
[16] Liu, B. and Großhans, J. (2019) The Role of dNTP Metabolites in Control of the Embryonic Cell Cycle. Cell Cycle, 18, 2817-2827.
https://doi.org/10.1080/15384101.2019.1665948
[17] Kohnken, R., Kodigepalli, K.M. and Wu, L. (2015) Regulation of Deoxynucleotide Metabolism in Cancer: Novel Mechanisms and Therapeutic Implications. Molecular Cancer, 14, Article No. 176.
https://doi.org/10.1186/s12943-015-0446-6
[18] Traut, T.W. (1994) Physiological Concentrations of Purines and Pyrimidines. Molecular and Cellular Biochemistry, 140, 1-22.
https://doi.org/10.1007/BF00928361
[19] Malkinson, F.D. (1981) Some Principles of Radiobiology: A Selective Review. Journal of Investigative Dermatology, 76, 32-38.
https://doi.org/10.1111/1523-1747.ep12479220
[20] Fujita, K., Kawarada, Y., Terada, K., Sugiyama, T., Ohyama, H. and Yamada, T. (2000) Quantitative Detection of Apoptotic Thymocytes in Low-Dose X-Irradiated Mice by an Anti-Single-Stranded DNA Antibody. Journal of Radiation Research, 41, 139-149.
https://doi.org/10.1269/jrr.41.139
[21] Ivannik, B.P., Golubeva, R.V., Proskuryakov, S.Y. and Ryabchenko, N.J. (1975) Repair and Degradation of DNA in the Irradiated Rat Thymocytes. Radiobiologiya, 15, 500-505. (Article in Russian)
[22] Tempel, K. (1990) Changes in Nucleoid Viscosity Following X-Irradiation of Rat Thymic and Splenic Cells in Vitro. Radiation and Environmental Biophysics, 29, 19-30.
https://doi.org/10.1007/BF01211232
[23] Pechatnikov, V.A., Afanasyev, V.N., Korol, B.A., Korneev, V.N., Rochev, Yu.A. and Umansky, S.R. (1986) Flow Cytometry Analysis of DNA Degradation in Thymocytes of y-Irradiated or Hydrocortisone Treated Rats. General Physiology and Biophysics, 5, 273-284.
[24] Qiu, X., Guittet, O., Mingoes, C., El Banna, N., Huang, M.-E., Lepoivre, M. et al. (2019) Quantification of Cellular Deoxyribonucleoside Triphosphates by Rolling Circle Amplification and Förster Resonance Energy Transfer. Analytical Chemistry, 91, 14561-14568.
https://doi.org/10.1021/acs.analchem.9b03624
[25] Huang, C.-Y., Yagüe-Capilla, M., González-Pacanowska, D. and Chang, Z.-F. (2020) Quantitation of Deoxynucleoside Triphosphates by Click Reactions. Scientific Reports, 10, Article No. 611.
https://doi.org/10.1038/s41598-020-57463-3
[26] Desai, A.S., Hunter, M.R. and Kapustin, A.N. (2019) Using Macropinocytosis for Intracellular Delivery of Therapeutic Nucleic Acids to Tumor Cells. Philosophical Transactions of the Royal Society B, Biological Sciences, 314, Article ID: 20180156.
https://doi.org/10.1098/rstb.2018.0156
[27] Mann, C.L., Hughes, F.M. and Cidlowski, J.A. (2000) Delineation of the Signaling Pathways Involved in Glucocorticoid-Induced and Spontaneous Apoptosis of Rat Thymocytes. Endocrinology, 141, 528-538.
https://doi.org/10.1210/endo.141.2.7314
[28] Shoutko, A.N., Gerasimova, O.A., Fedorov, V.A. and Zherebtsov, F.K. (2019) Non-Invasive Vibration-Stress of the Cirrhotic Liver of Patients Waiting for Transplantation Induces of Circulating CD133+ Stem Lymphocytes Committed Phenotypically toward the Liver. Open Journal of Biophysics, 9, 155-168.
https://doi.org/10.4236/ojbiphy.2019.93012
[29] Hu, Z., Chen, H., Long, Y., Li, P. and Gu, Y. (2021) The Main Sources of Circulating Cell-Free DNA: Apoptosis, Necrosis and Active Secretion. Critical Reviews in Oncology/Hematology, 157, Article ID: 103166.
https://doi.org/10.1016/j.critrevonc.2020.103166
[30] Ferraro, P., Pontarin, G., Crocco, L., Fabris, S., Reichard, P. and Bianchi V. (2005) Mitochondrial Deoxynucleotide Pools in Quiescent Fibroblasts. A Possible Model for Mitochondrial Neurogastrointestinal Encephalomyopathy (MNGIE). The Journal of Biological Chemistry, 280, 24472-24480.
https://doi.org/10.1074/jbc.M502869200
[31] Deshpandea, S., Yangb, Y., Chilkotia, A. and Zauschera, S. (2019) Enzymatic Synthesis and Modification of High Molecular Weight DNA Using Terminal Deoxynucleotidyl Transferase. Methods in Enzymology, 627, 163-188.
https://doi.org/10.1016/bs.mie.2019.07.044
[32] Belli, M. and Tabocchini, M.A. (2020) Ionizing Radiation-Induced Epigenetic Modifications and Their Relevance to Radiation Protection. International Journal of Molecular Sciences, 21, Article No. 5993.
https://doi.org/10.3390/ijms21175993
[33] Guo, J.-R., Chen, Q.-Q., Lam, C.W.K., Wang, C.-Y., Wong, V., K.W., Chang, Z.-F., et al. (2016) Profiling Ribonucleotide and Deoxyribonucleotide Pools Perturbed by Gemcitabine in Human Non-Small Cell Lung Cancer Cells. Scientific Reports, 6, Article No. 37250.
https://doi.org/10.1038/srep37250
[34] Haghdoost, S., Czene, S., Näslund, I., Skog, S. and Harms-Ringdahl, M. (2005) Extracellular 8-oxo-dG as a Sensitive Parameter for Oxidative Stress in Vivo and in Vitro. Free Radical Research, 39, 153-162.
https://doi.org/10.1080/10715760500043132
[35] Sangsuwan, T. and Haghdoost, S. (2008) The Nucleotide Pool, a Target for Low-Dose γ-Ray-Induced Oxidative Stress. Radiation Research, 170, 776-783.
[36] Cronkite, E.P., Chanana, A.D., Joel, D.D., Rai, K.R. and Schiffer, L.M. (1968) Influence of Extracorporeal Irradiation of the Blood and Lymph on Lymphopoiesis and Immunity. Proceedings of a Symposium on the Effects of Radiation on Cellular Proliferation and Differentiation, Monaco, 1-5 April 1968, 307-326.
[37] Shoutko, A.N. (2019) Immunity or Morphogenesis in Cancer Development and Treatment. Integrative Cancer Science and Therapeutics, 6, 1-8.
https://doi.org/10.15761/ICST.1000317