OJBIPHY  Vol.11 No.3 , July 2021
Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation
Abstract: The medical application of electromagnetic resonances is a controversial area of knowledge. Numerous unproven statements and some medical quackeries were published and distributed in informal channels among suffering patients. The fake information is hazardous in such severe diseases as cancer. The optimal, high efficacy energy transport by resonances attracts the interest of the experts and the public. The focus of the attention is technical and concentrates on the careful selection and excitation of the target compounds or cells, expecting helpful modifications. The complication is the complexity of the living systems. The targets are interconnected with an extensive network in the tissues where homeostasis, a dynamic equilibrium, regulates and controls changes. The broad range of energy-transfer variants could cause resonant effects, but the necessary criteria for the selection and proper action have numerous limits. The modulated high-frequency carrier may solve a part of the problem. This mixed solution uses the carrier and modulation’s particular properties to solve some of the obstacles of selection and excitation processes. One of the advantages of modulation is its adaptive ability to the living complexity. The modulated signal uses the homeostatic time-fractal pattern (1/f noise). The task involves finding and providing the best available mode to support the healthy state of the body. The body’s reaction to the therapy remains natural; the modulation boosts the body’s ability for the homeostatic regulation to reestablish the healthy state.
Cite this paper: Szasz, A. (2021) Therapeutic Basis of Electromagnetic Resonances and Signal-Modulation. Open Journal of Biophysics, 11, 314-350. doi: 10.4236/ojbiphy.2021.113011.

[1]   Bolton, H.C. (1898) Iatro-Chemistry in 1897. Science, 7, 397-402.

[2]   Kempf, E.J. (1906) European Medicine: A Résumé of Medical Progress during the Eighteenth and Nineteenth Centuries. Journal of the Medical Library Association, 3, 231-248.

[3]   Basford, J.R. (2001) A Historical Perspective of the Popular Use of Electric and Magnetic Therapy. Archives of Physical Medicine and Rehabilitation, 82, 1261-1269.

[4]   Barrett, S. (2008/2019) Magnet Therapy: A Skeptical View. Quackwatch.

[5]   Lakhovsky, G. (1925) Curing Cancer with Ultra Radio Frequencies. Radio News, February, 1282-1283.

[6]   Lakhovsky, G. (1988) Secret of Life: Electricity Radiation & Your Body. 4th Revised Edition, Noontide Press, Los Angeles.

[7]   Bearden, T.E. (1995) Vacuum Engines and Priore’s Methodology: The True Science of Energy Medicine. Explore More, #10:16.

[8]   Bateman, J.B. (1978) A Biologically Active Combination of Modulated Magnetic and Microwave Fields: The Prioré Machine. Office of Naval Research, London, Report R-5-78, Aug. 16.

[9]   Camp, J. (1973) Magic, Myth and Medicine. Priory Press Ltd., Dunstable.

[10]   Manning, C.A. and Vanrenen, L.J. (1989) Bioenergetic Medicines East and West. North Atlantic Books, Berkeley.

[11]   Volodiaev, I. and Belousssov, L.V. (2015) Revisiting the Mitogenetic Effect of Ultra-Weak Photon Emission. Frontiers in Physiology, 6, 241.

[12]   Tesla, N. (1898) High Frequency Oscillators for ElectroTherapeutic and Other Purposes. The Electrical Engineer, Vol. 26, No. 550.

[13]   A Brief History of Dr. Royal Raymond Rife.

[14]   Bird, C. (1976) What Has Become of the Rife Microscope? New Age Journal, March 1976, 41-47.

[15]   Kendall, A.I. and Rife, R.R. (1931) Observations on Bacillus Typhosus in Its Filterable State: A Preliminary Communication. California and Western Medicine, 35, 409-411.

[16]   Line, B. (2017) Rife’s Great Discovery: Why “Resonant Frequency” Therapy Is Kept Hidden from Public Awareness. Biomed Publishing Group, South Lake Tahoe.

[17]   Lynes, B. (1997) The Cancer Cure That Worked: 50 Years of Suppression. Marcus Publishing, Santo Domingo Este.

[18]   Allegretti, M. (2018) The Frequencies of Rifing—From the First Frequencies Discovered by Royal Rife to Today: Guide to Selection and Use of Spooky2 Frequencies. Independently Published.

[19]   Silver, N. (2001) The Handbook of Rife Frequency Healing: Holistic Technology for Cancer and Other Diseases. The Center for Frequency Education Publishing, New York.

[20]   Rife, R.R. (1953) History of the Development of a Successful Treatment for Cancer and Other Virus, Bacteria and Fungi. Rife Virus Microscope Institute, San Diego.

[21]   Humbug Is Rife: Cancer Quackery, 1892 and 2015. Evidence Bytes, 2015.

[22]   Frost, J. (2017) A Skeptical Look at the Spooky2 Rife System. Quackwatch.

[23]   (1994) Questionable Methods about Cancer Management: Electronic Devices. CA: A Cancer Journal for Clinicians, 44, 115-127.

[24]   Energy Medicine—Radionics Rife Machine.

[25]   Barrett, S. (2010) Device Watch—Rife Device Marketer Sentenced to Prison.

[26]   Barrett, S. (2012) Quackwatch—Rife Machine Operator Sued. Based on Investigators’ Reports, FDA Consumer. U.S. Food and Drug Administration, Silver Spring.

[27]   Theise, N.D. and Kafatos, M.C. (2013) Complementarity in Biological Systems—A Complexity View. Complexity, 18, 11-20.

[28]   Mohr, H. (1977) Structure and Significance of Science. Springer, New York, 102.

[29]   Brandas, E.J. (2010) Gödelian Structures and Self-Organization in Biological Systems. International Journal of Quantum Chemistry, 111, 1321-1332.

[30]   Gödel, K. (1931) über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme, I. Monatshefte für Mathematik und Physik, 38, 173-198.

[31]   Seel, M. and Ladik, J. (2019) The Tragicomedy of Modern Theoretical Biology. In: Advances in Quantum Chemistry, Elsevier, Amsterdam, 1-13.

[32]   Wierman, M.J. (2010) An Introduction to Mathematics of Uncertainty. Hoors Program, Creighton University, College of Arts and Sciences, Omaha.

[33]   Sneppen, K., Krisna, S. and Semsey, S. (2010) Simplified Models of Biological Networks. Annual Review of Biophysics, 39, 43-59.

[34]   Turrigiano, G. (2017) Homeostatic Signaling: The Positive Side of Negative Feedback. Current Opinion in Neurobiology, 17, 318-324.

[35]   Modell, H., Cliff, W., Michael, J., et al. (2015) A Physiologist’s View of Homeostasis. Advances in Physiology Education, 39, 259-266.

[36]   Lloyd, D., Aon, M.A. and Cortassa, S. (2001) Why Homeodynamics, Not Homeostasis? The Scientific World, 1, 133-145.

[37]   Walleczek, J. (2000) Self-Organized Biological Dynamics & Nonlinear Control. Cambridge University Press, Cambridge.

[38]   Kurakin, A. (2011) Self-Organizing Fractal Theory as a Universal Discovery Method: The Phenomenon of Life. Theoretical Biology and Medical Modelling, 8, Article No. 4.

[39]   Anteneodo, C. and da Luz, M.G.E. (2010) Complex Dynamics of Life at Different Scales: From Genomic to Global Environmental Issues. Philosophical Transactions of the Royal Society A, 368, 5561-5568.

[40]   Mandelbrot, B.B. (1977) The Fractal Geometry of Nature. Times Books, New York.

[41]   Losa, G.A. (2014) The Fractal Geometry of Life. Rivista di Biologia, 102, 29-60.

[42]   Losa, G.A. (2012) Fractals and Their Contribution to Biology and Medicine. Medicographia, 34, 365-374.

[43]   Weibel, E.R. (1991) Fractal Geometry: A Design Principle for Living Organisms. American Journal of Physiology, 261, L361-L369.

[44]   Waliszewski, P., Molski, M. and Konarski, J. (2011) Self-Similarity, Collectivity, and Evolution of Fractal Dynamics during Retinoid-Induced Differentiation of Cancer Cell Population. Fractals, 7, 139-149.

[45]   Deering, W. and West, B.J. (1992) Fractal Physiology. IEEE Engineering in Medicine and Biology, 11, 40-46.

[46]   West, B.J. (1990) Fractal Physiology and Chaos in Medicine. World Scientific, Singapore, London.

[47]   Bassingthwaighte, J.B., Leibovitch, L.S. and West, B.J. (1994) Fractal Physiology. Oxford University Press, New York, Oxford.

[48]   Goldberger, A.L., Amaral, L.A., Hausdorff, J.M., et al. (2002) Fractal Dynamics in Physiology: Alterations with Disease and Aging. PNAS Colloquium, 99, 2466-2472.

[49]   Stehlik, M., Hermann, P. and Nicolis, O. (2016) Fractal Based Cancer Modelling. REVSTAT—Statistical Journal, 14, 139-155.

[50]   Deisboeck, T.S., Guiot, C., Delsanto, P.P., et al. (2006) Does Cancer Growth Depend on Surface Extension? Medical Hypotheses, 67, 1338-1341.

[51]   Stehlik, M., Wartner, F. and Minarova, M. (2013) Fractal Analysis for Cancer Research: Case Study and Simulation of Fractals. Pliska Studia Mathematica Bulgarica, 22, 195-206.

[52]   Baish, J.W. and Jain, R.K. (2000) Fractals and Cancer. Cancer Research, 60, 3683-3688.

[53]   Liu, S., Wang, Y., Xu, K., Wang, Z., Fan, X., Zhang, C., Li, S., Qiu, X. and Jiang, T. (2017) Relationship between Necrotic Patterns in Glioblastoma and Patient Survival: Fractal Dimension and Lacunarity Analyses Using Magnetic Resonance Imaging. Scientific Reports, 7, Article No. 8302.

[54]   Goldenfeld, N. and Woese, C. (2010) Life Is Physics: Evolution as a Collective Phenomenon Far from Equilibrium. Annual Review of Condensed Matter Physics, 2, 375-399.

[55]   West, B.J. and West, D. (2011) Are Allometry and Macroevolution Related? Physica A: Statistical Mechanics and Its Applications, 390, 733-1736.

[56]   Camazine, S., Deneubourg, J.L., Franks, N.R., et al. (2003) Self-Organization in Biological Systems. Princeton Studies in Complexity, Princeton University Press, Princeton, Oxford.

[57]   West, G.B. and Brown, J.H. (2005) The Origin of Allometric Scaling Laws in Biology from Genomes to Ecosystems: Towards a Quantitative Unifying Theory of Biological Structure and Organization. Journal of Experimental Biology, 208, 1575-1592.

[58]   Eskov, V.M., Filatova, O.E., Eskov, V.V., et al. (2017) The Evolution of the Idea of Homeostasis: Determinism, Stochastics, and Chaos—Self-Organization. Biophysics, 62, 809-820.

[59]   Billman, G.E. (2020) Homeostasis: The Underappreciated and Far Too Often Ignored Central Organizing Principle of Physiology. Frontiers in Physiology, 11, Article No. 200.

[60]   Mode, C.J., Durrett, R., Klebaner, F., et al. (2013) Applications of Stochastic Processes in Biology and Medicine. International Journal of Stochastic Analysis, 2013, Article ID: 576381.

[61]   Cramer, F. (1995) Chaos and Order (The Complex Structure of Living Systems). VCH, Weinheim, New York, Cambridge.

[62]   Peng, C.K., Buldyrev, S.V., Hausdorff, J.M., et al. (1994) Fractals in Biology and Medicine: From DNA to the Heartbeat. In: Bunde, A. and Havlin, S., Eds., Fractals in Science, Springer-Verlag, Berlin, 49-87.

[63]   Bak, P., Tang, C. and Wieserfeld, K. (1988) Self-Organized Criticality. Physical Review A, 38, 364.

[64]   Musha, T. and Sawada, Y. (1994) Physics of the Living State. IOS Press, Amsterdam.

[65]   Schlesinger, M.S. (1987) Fractal Time and 1/f Noise in Complex Systems. Annals of the New York Academy of Sciences, 504, 214-228.

[66]   Wentian, L. (1989) Spatial 1/f Spectra in Open Dynamical Systems. Europhysics Letters, 10, 395-400.

[67]   Kim, J.J., Parker, S., Henderson, T. and Kirby, J.N. (2020) Physiological Fractals: Visual and Statistical Evidence across Timescales and Experimental States. Journal of the Royal Society Interface, 17, 1-8.

[68]   Szendro, P., Vincze, G. and Szasz, A. (2001) Bio-Response on White-Noise Excitation. Electromagnetic Biology and Medicine, 20, 215-229.

[69]   Szendro, P., Vincze, G. and Szasz, A. (2001) Pink-Noise Behaviour of Biosystems. European Biophysics Journal, 30, 227-231.

[70]   Vincze, Gy. and Szasz, A. (2018) Similarities of Modulation by Temperature and by Electric Field. OJBIPHY, 8, 95-103.

[71]   Lin, J.C. (1989) Electromagnetic Interaction with Biological Systems. Pergamon Press, New York.

[72]   Bersani, F. (1999) Electricity and Magnetism in Biology and Medicine. Kluwer Academic Plenum Publishers, New York.

[73]   Marko, M. (2005) “Biological Windows”: A Tribute to WR Adey. The Environmentalist, 25, 67-74.

[74]   Adey, W.R. (1984) Nonlinear, Nonequilibrium Aspects of Electromagnetic Field Interactions at Cell Membranes. In: Adey, W.R. and Lawrence, A.F., Eds., Nonlinear Electrodynamics in Biological Systems, Plenum Press, New York, 3-22.

[75]   Adey, W.R. (1990) Joint Actions of Environmental Nonionizing Electromagnetic Fields and Chemical Pollution in Cancer Promotion. Environmental Health Perspectives, 86, 297-305.

[76]   Blackman, C.F., Kinney, L.S., House, D.E., et al. (1989) Multiple Power-Density Windows and Their Possible Origin. Bioelectromagnetics, 10, 115-128.

[77]   Liu, D.-S., Astumian, R.D. and Tsong, T.Y. (1990) Activation of Na+ and K+ Pumping Modes of (Na,K)-ATPase by an Oscillating Electric Field. The Journal of Biological Chemistry, 265, 7260-7267.

[78]   Markin, V.S. and Tsong, T.Y. (1991) Frequency and Concentration Windows for the Electric Activation of a Membrane Active Transport System. Biophysical Journal, 59, 1308-1316.

[79]   Schwan, H.P. (1957) Electrical Properties of Tissue and Cell Suspensions. In: Lawrence, J.H. and Tobias, C.A., Eds., Advances in Biological and Medical Physics, Academic Press, New York, Vol. V, 147-209.

[80]   Schwan, H.P. (1993) Mechanism Responsible for Electrical Properties of Tissues and Cell Suspensions. Medical Progress through Technology, 19, 163-165.

[81]   Schwan, H.P. (1954) Electrical Properties of Muscle Tissue at Low Frequencies. Zeitschrift für Naturforschung, 9B, 245.

[82]   Falk, G. and Fatt, P. (1964) Linear Electrical Properties of Striated Muscle Fibers Observed with Intracellular Electrodes. Proceedings of the Royal Society of London, Series B, 160, 69-123.

[83]   Martinsen, Ø.G., Grimnes, S. and Mirtaheri, P. (2000) Non-Invasive Measurements of Post Mortem Changes in Dielectric Properties of Haddock Muscle—A Pilot Study. Journal of Food Engineering, 43, 189-192.

[84]   Schwan, H.P. and Takashima, S. (1991) Dielectric Behavior of Biological Cells and Membranes. Bulletin of the Institute for Chemical Research, Kyoto University, 69, 459-475.

[85]   Cole, K.S. (1972) Membranes, Ions and Impulses. University of California Press, Berkeley.

[86]   Anderson, J.C. (1964) Dielectrics. Chapman & Hall, London.

[87]   Pethig, R.R. (1979) Dielectric and Electronic Properties of Biological Materials. Wiley, Hoboken.

[88]   Pethig, R.R. (2017) Dielectrophoresis: Theory, Methodology and Biological Applications. John Wiley & Sons, Hoboken.

[89]   Asami, K. (2002) Characterization of Biological Cells by Dielectric Spectroscopy. Journal of Non-Crystalline Solids, 305, 268-277.

[90]   Pauly, H. and Schwan, H.P. (1959) Uber die Impedanz einer Suspension von Kugelformigen Teilchen mit einer Schale. Zeitschrift für Naturforschung, 14B, 125-131.

[91]   Stoy, R.D., Foster, K.R. and Schwan, H.P. (1982) Dielectric Properties of Mammalian Tissues from 0.1 to 100 MHz: A Summary of Recent Data. Physics in Medicine & Biology, 27, 501-513.

[92]   Gotz, M., Karsch, L. and Pawelke, J. (2017) A New Model for Volume Recombination in Plane-Parallel Chambers in Pulsed Fields of High Dose-per-Pulse. Physics in Medicine & Biology, 62, 8634-8654.

[93]   Stubbe, M. and Gimsa, J. (2015) Maxwell’s Mixing Equation Revisited: Characteristic Impedance Equations for Ellipsoidal Cells. Biophysical Journal, 109, 194-208.

[94]   Rajewsky, B. and Schwan, H.P. (1948) The Dielectric Constant and Conductivity of Blood at Ultrahigh Frequencies. Naturwissenschaften, 35, 315.

[95]   Calabro, E. and Magazu, S. (2018) Resonant Interaction between Electromagnetic Fields and Proteins: A Possible Starting Point for the Treatment of Cancer. Electromagnetic Biology and Medicine, 37, 155-158.

[96]   Johns, L.D. (2002) Nonthermal Effects of Therapeutic Ultrasound: The Frequency Resonance Hypothesis. Journal of Athletic Training, 37, 293-299.

[97]   Cross, S.E., Jin, Y.-S., Rao, J. and Gimzewski, J.K. (2007) Nanomechanical Analysis of Cells from Cancer Patients. Nature Nanotechnology, 2, 780-783.

[98]   Fraldi, M., Cugno, A., Deseri, L., et al. (2015) A Frequency-Based Hypothesis for Mechanically Targeting and Selectively Attacking Cancer Cells. Journal of the Royal Society Interface, 12, Article ID: 2015656.

[99]   Cross, S., Jin, Y.-S., Tondre, J., Wong, R., Rao, J. and Gimzewski, J. (2008) AFM-Based Analysis of Human Metastatic Cancer Cells. Nanotechnology, 19, Article ID: 384003.

[100]   Lekka, M., et al. (2012) Cancer Cell Detection in Tissue Sections Using AFM. Archives of Biochemistry and Biophysics, 518, 151-156.

[101]   Liboff, A.R. (1985) Geomagnetic Cyclotron Resonance in Living Cells. Journal of Biological Physics, 13, 99-102.

[102]   McLoad, B.R. and Liboff, A.R. (1986) Dynamic Characteristic of Membrane Ions in Multifield Configurations of Low-Frequency Electromagnetic Readiation. Bioelectromagnetics, 7, 177-189.

[103]   Liboff, A.R. (2003) Ion Cyclotron Resonance in Biological Systems: Experimental Evidence. In: Stavroulakis, P., Ed., Biological Effects of Electromagnetic Fields, Springer Verlag, Berlin, 76-113.

[104]   Szasz, A. (1991) An Electronically Driven Instability: The Living State. Physiological Chemistry and Physics and Medical NMR, 23, 43-50.

[105]   Frohlich, H. (1983) Coherence in Biology. In: Frohlich, H. and Kremer, F., Eds., Coherent Excitations in Biological Systems, Springer Verlag, Berlin, 1-5.

[106]   Frohlich, H. (1988) Biological Coherence and Response to External Stimuli. Springer Verlag, Berlin.

[107]   McDonnell, M. and Abbott, D. (2009) What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology. PLOS Computational Biology, 5, e1000348.

[108]   Bezrukov, S.M. and Vodyanoy, I. (1997) Stochastic Resonance at the Single-Cell Level. Nature, 388, 632-633.

[109]   Vincze, Gy., Szász, A. and Szasz, N. (2005) On the Thermal Noise Limit of Cellular Membranes. Bioelectromagnetics, 26, 28-35.

[110]   Tsong, T.Y. and Chang, C.-H. (2007) A Markovian Engine for a Biological Energy Transducer: The Catalytic Wheel. Bio Systems, 88, 323-333.

[111]   Michaelis, L. and Menten, M.L. (1913) Die Kinetik der Invertinwirkung. Biochemische Zeitschrift, 49, 333-369. (In German) Translation to English: Goody, R.S. and Johnson, K.A. (2011) The Original Michaelis Constant: Translation of the 1913 Michaelis-Menten Paper. Biochemistry, 50, 8264-8269.

[112]   Savageau, M.A. (1998) Development of Fractal Kinetic Theory for Enzyme-Catalysed Reactions and Implications for the Design of Biochemical Pathways. Biosystems, 47, 9-36.

[113]   Tsong, T.Y. and Astumian, R.D. (1988) Electroconformational Coupling: How Membrane-Bound ATPase Transduces Energy from Dynamic Electric Fields. Annual Review of Physiology, 50, 273-290.

[114]   Astumian, R.D. (1994) Electroconformational Coupling of Membrane Proteins. Annals of the New York Academy of Sciences, 720, 136-140.

[115]   Markin, V.S., Liu, D., Rosenberg, M.D., et al. (1992) Resonance Transduction of Low Level Periodic Signals by an Enzyme: An Oscillatory Activation Barrier Model. Biophysical Journal, 61, 1045-1049.

[116]   McNamara, B. and Wiesenfeld, K. (1989) Theory of Stochastic Resonance. Physical Review A, 39, 4854-4869.

[117]   Astumian, R.D. (1997) Thermodynamics and Kinetics of a Brownian Motor. Science, 276, 917-922.

[118]   Astumian, R.D. and Bier, M. (1994) Fluctuation Driven Ratchets: Molecular Motors. Physical Review Letters, 72, 1766-1769.

[119]   Astumian, R.D. and Derényi, I. (1998) Fluctuation Driven Transport and Models of Molecular Motors and Pumps. European Biophysics Journal, 27, 474-489.

[120]   Linke, H., Downton, M.T. and Zuckermann, M.J. (2005) Performance Characteristics of Brownian Motors. Chaos, 15, Article ID: 026111.

[121]   Astumian, R.D., Chock, P.B., Tsong, T.Y., et al. (1987) Can Free Energy Be Transduced from Electric Noise? Proceedings of the National Academy of Sciences of the United States of America, 84, 434-438.

[122]   Feynman, R.P., Leighton, R.B. and Sands, M. (1966) The Feynman Lectures on Physics. Adison-Wesley, California Institute of Technology, Reading.

[123]   Vincze, Gy., Szigeti, Gy.P. and Szasz, A. (2018) On the Feynman Ratchet and the Brownian Motor. Open Journal of Biophysics, 2, 22-30.

[124]   Westerhoff, H.V., Tsong, T.Y., Chock, P.B., et al. (1986) How Enzymes Can Capture and Transmit Free Energy from an Oscillating Electric Field. Proceedings of the National Academy of Sciences of the United States of America, 83, 4734-4738.

[125]   Seegers, J.C., Engelbrecht, C.A. and Papendorp van, D.H. (2001) Activation of Signal-Transduction Mechanisms May Underlie the Therapeutic Effects of an Applied Electric Field. Medical Hypotheses, 57, 224-230.

[126]   Tinoco, I., Sauer, K., Wang, J.C., et al. (2002) Physical Chemistry. Principles and Applications in Biological Sciences. 4th Edition, Prentice-Hall Inc., Hoboken.

[127]   Xie, T.D., Chen, Y., Marszalek, P., et al. (1997) Fluctuation-Driven Directional Flow in Biochemical Cycle: Further Study of Electric Activation of Na,K Pumps. Biophysical Journal, 72, 2496-2502.

[128]   Astumian, R.D. and Chock, P.B. (1989) Effects of Oscillations and Energy-Driven Fluctuations on the Dynamics of Enzyme Catalsysis and Free-Energy Transduction. Physical Review A, 39, 6416-6435.

[129]   Davydov, A.S. (1982) Biology and Quantum Mechanics. Pergamon Press Ltd., Oxford.

[130]   Scott, A.C. (1982) Dynamics of Davydov Solitons. Physical Review A, 26, 578-595.

[131]   Hameroff, S. (1987) Ultimate Computing: Biomolecular Consciousness and Nanotechnology. Elsevier Science Publishers B.V., Amsterdam, 18.

[132]   Sinkala, Z. (2006) Soliton/Exciton Transport in Proteins. Journal of Theoretical Biology, 241, 919-927.

[133]   Andersen, S.S.L., Jackson, A.D. and Heimburg, T. (2009) Towards a Thermodynamic Theory of Nerve Pulse Propagation. Progress in Neurobiology, 88, 104-113.

[134]   Heimburg, T. and Jackson, A.D. (2005) On Soliton Propagation in Biomembranes and Nerves. Proceedings of the National Academy of Sciences of the United States of America, 102, 9790-9795.

[135]   Yakushevich, L.V. (2004) Nonlinear Physics of DNA. 2nd Revised Edition, Wiley-VCH, Hoboken.

[136]   Davydov, A.S. (1991) Solitons in Molecular Systems. Mathematics and Its Applications (Soviet Series), Vol. 61, 2nd Edition, Kluwer Academic Publishers, Dordrecht.

[137]   Cruzeiro, L., Halding, J., Shristiansen, P.L. and Skovgaard, O. (1988) Temperature Effects on the Davydov Soliton. Physical Review A, 37, 880-887.

[138]   Cruzeiro-Hansson, L. (1992) Mechanism of Thermal Destabilization of the Davydov Soliton. Physical Review A, 45, 4111-4115.

[139]   Careri, G. and Wyman, J. (1984) Soliton-Assisted Unidirectional Circulation in a Biochemical Cycle. PNAS, 81, 4386-4388.

[140]   Brizhik, L.S., Eremko, A., Piette, B. and Zakrzewski, W. (2004) Solitons in Alpha-Helical Proteins. Physical Review E, 70, Article ID: 031914.

[141]   Xie, T.D., Marszalek, P., Chen, Y.D., et al. (1994) Recognition and Processing of Randomly Fluctuating Electric Signals by Na,K-ATPase. Biophysical Journal, 67, 1247-1251.

[142]   Tsong, T.Y. and Xie, T.D. (2002) Ion Pump as Molecular Ratchet and Effects of Noise: Electric Activation of Cation Pumping by Na,K-ATPase. Applied Physics A, 75, 345-352.

[143]   Kadanttsev, V.N. and Goltsov, A. (2019) Collective Excitations in Alpha-Helical Protein Structures Interacting with Environment.

[144]   Kuwayama, H. and Ishida, S. (2013) Biological Soliton in Multicellular Movement. Scientific Reports, 3, Article No. 2272.

[145]   Bonner, J.T. (2009) The Social Amoebae: The Biology of Cellular Slime Molds. Princeton University Press, Princeton.

[146]   Szasz, A., van Noort, D., Scheller, A., et al. (1994) Water States in Living Systems. I. Structural Aspects. Physiological Chemistry and Physics and Medical NMR, 26, 299-322.

[147]   Agmon, N. (1995) The Grotthuss Mechanism. Chemical Physics Letters, 244, 456-462.

[148]   Markovitch, O. and Agmon, N. (2007) Structure and Energetics of the Hydronium Hydration Shells. The Journal of Physical Chemistry A, 111, 2253-2256.

[149]   Maryan, M.I., Kikineshy, A., Szendrö, P., et al. (2001) Modeling of the Dissipative Structure of Water. Acta Technologica Agriculturae Slovaca Universitas Agriculturae Nitriae, 3, 77-80.

[150]   Pavlenko, N. (2004) Proton Wires in an Electric Field: The Impact of Grotthuss Mechanism on Charge Translocation.

[151]   Szendro, P., Koltay, J., Szasz, A., et al. (1999) Is the Structure of the Water Convertible in Physical Way? Hungarian Agricultural Engineering, 12, 43-45.

[152]   Andocs, G., Vincze, Gy., Szasz, O., Szendro, P. and Szasz, A. (2009) Effect of Curl-Free Potentials on Water. Electromagnetic Biology and Medicine, 28, 166-181.

[153]   Tao, F.-M. (2003) Solvent Effects of Individual Water Molecules. In: Buch, V. and Devilin, J.P., Eds., Water in Confining Geometries, Cluster Physics, Springer Verlag. Berlin, 79-99.

[154]   Szasz, A., Szasz, N. and Szasz, O. (2010) Oncothermia—Principles and Practices. Springer Science, Heidelberg.

[155]   Varma, R. and Selman, J.S. (1991) Techniques for Characterisation of Electrodes and Electrochemical Processes. John Wiley & Sons, New York.

[156]   Yang, K.-L., Huang, C.-C., Chi, M.-S., Chiang H.-C., Wang, Y.-S. andocs, G., et al. (2016) In Vitro Comparison of Conventional Hyperthermia and Modulated Electro-Hyperthermia. Oncotarget, 7, 84082-84092.

[157]   Pickard, W.F. and Rosenbaum, F.J. (1978) Biological Effects of Microwaves at the Membrane Level: Two Possible Athermal Electrophysiological Mechanisms and a Proposed Experimental Test. Mathematical Biosciences, 39, 235-253.

[158]   Barsoum, Y.H. and Pickard, W.F. (1982) Radio-Frequency Rectification in Electrogenic and Nonelectrogenic Cells of Chara and Nitella. The Journal of Membrane Biology, 65, 81-87.

[159]   Goldman, D.E. (1943) Potential, Impedance, and Rectification in Membranes. The Journal of General Physiology, 27, 37-60.

[160]   Ramachandran, S., Blick, R.H. and van der Weide, D. (2010) Radio Frequency Rectification on Membrane Bound Pores. Nanothechnology, 21, Article ID: 075201.

[161]   Tanaka, A. and Tokimasa, T. (1999) Theoretical Background for Inward Rectification. The Tokai Journal of Experimental and Clinical Medicine, 24, 147-153.

[162]   Astumian, R.D., Weaver, J.C. and Adair, R.K. (1995) Rectification and Signal Averaging of Weak Electric Fields by Biological Cells. Proceedings of the National Academy of Sciences of the United States of America, 92, 3740-3743.

[163]   Balzano, Q. (2002) Proposed Test for Detection of Nonlinear Responses in Biological Preparations Exposed to RF Energy. Bioelectromagnetics, 23, 278-287.

[164]   Balzano, Q. and Sheppard, A.R. (2003) RF Nonlinear Interactions in Living Cells—I: Nonequilibrium Thermodynamic Theory. Bioelectromagnetics, 24, 473-482.

[165]   Weaver, J.C. and Astumian, R.D. (1990) The Response of Living Cells to Very Week Electric Fields: The Thermal Noise Limit. Science, 247, 459-462.

[166]   Bier, M. (2006) How to Evaluate the Electric Noise in a Cell Membrane? Acta Physica Polonica B, 37, 1409-1424.

[167]   Yesufu, T.K. and Atijosan, A.O. (2015) Weak Amplitude Modulated (AM) Signal Detection Algorithm for Software-Defined Radio Receivers. International Journal of Intelligent Information Systems, 4, 79-83.

[168]   Pinto, R.P., Reboul, J.M.Q., Vega-Leal, A.P. and Tombs, J. (2008) Stochastic Resonance as a Null Distortion Demodulation. IEEE International Instrumentation and Measurement Technology Conference, Victoria, 12-15 May 2008, 2120-2125.

[169]   Szentgyorgyi, A. (1978) The Living State and Cancer. Marcel Dekker Inc., New York.

[170]   Szentgyorgyi, A. (1998) Electronic Biology and Cancer. Marcel Dekkerm, New York.

[171]   Szentgyorgyi, A. (1968) Bioelectronics, a Study on Cellular Regulations, Defense and Cancer. Academic Press, New York.

[172]   Szasz, O., Szasz, A.M., Minnaar, C. and Szasz, A. (2017) Heating Preciosity—Trends in Modern Oncological Hyperthermia. Open Journal of Biophysics, 7, 116-144.

[173]   Wust, P., Kortum, B., Strauss, U., Nadobny, J., Zschaeck, S., Beck, M., et al. (2020) Nonthermal Effects of Radiofrequency Electromagnetic Fields. Scientific Reports, 10, Article ID: 13488.

[174]   Wust, P., Nadobny, J., Zschaeck, S. and Ghadjar, P. (2020) Physics of Hyperthermia—Is Physics Really against Us? In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Cambridge, Ch. 16, 346-376.

[175]   Meggyeshazi, N., Andocs, G., Balogh, L., Balla, P., Kiszner, G., Teleki, I., Jeney, A. and Krenacs, T. (2014) DNA Fragmentation and Caspase-Independent Programmed Cell Death by Modulated Electrohyperthermia. Strahlentherapie und Onkologie, 190, 815-822.

[176]   Wust, P., Ghadjar, P., Nadobny, J., et al. (2019) Physical Analysis of Temperature-Dependent Effects of Amplitude-Modulated Electromagnetic Hyperthermia. International Journal of Hypertension, 36, 1246-1254.

[177]   Pethig, R. (1984) Dielectric Properties of Biological Materials: Biophysical and Medical Application. IEEE Transactions on Electrical Insulation, EI-19, 453-474.

[178]   Schwan, H.P. (1963) Determination of Biological Impedances. In: Physical Techniques in Biological Research, Vol. 6, Academic Press, New York, 323-406.

[179]   Szasz, A. (2013) Electromagnetic Effects in Nanoscale Range. In: Shimizu, T. and Kondo, T., Eds., Cellular Response to Physical Stress and Therapeutic Applications, Chapter 4, Nova Science Publishers, Inc., Hauppauge, 55-81.

[180]   Staunton, J.R., et al. (2008) The Physical Sciences—Oncology Centers Network; a Physical Sciences Network Characterization of Non-Tumorigenic and Metastatic Cells. Scientific Reports, 3, Article No. 1449.

[181]   Vincze, Gy., Szigeti, Gy. andocs, G. and Szasz, A. (2015) Nanoheating without Artificial Nanoparticles. Biology and Medicine, 7, 249.

[182]   Szasz, O. and Szasz, A. (2014) Oncothermia Nano-Heating Paradigm. Journal of Cancer Science and Therapy, 6, 4.

[183]   Waldhauer, I. and Steinle, A. (2008) NK Cells and Cancer Immunosurveillance. Oncogene, 27, 5932-5943.

[184]   Zamai, L., Ponti, C., Mirandola, P., et al. (2007) NK Cells and Cancer. The Journal of Immunology, 178, 4011-4016.

[185]   Hu, W., Wang, G., Huang, D., et al. (2019) Cancer Immunotherapy Based on Natural Cell Killer Cells: Current Progress and New Opportunities. Frontiers in Immunology, 10, Article No. 1205.

[186]   Vancsik, T., Mathe, D., Horvath, I., Varallyaly, A.A., et al. (2021) Modulated Electro-Hyperthermia Facilitates NK-Cell Infiltration and Growth Arrest of Human A2058 Melanoma in a Xenograft Model. Frontiers in Oncology, 11, Article ID: 590764.

[187]   Megyesshazi, N. (2015) Studies on Modulated Electrohyperthermia Induced Tumor Cell Death in a Colorectal Carcinoma Model. PhD Theses, Pathological Sciences Doctoral School, Semmelweis University, Budapest.

[188]   Andocs, G., Meggyeshazi, N., Balogh, L., Spisak, S., Maros, M.E., Balla, P., Kiszner, G., Teleki, I., Kovago, Cs. and Krenacs, T. (2014) Upregulation of Heat Shock Proteins and the Promotion of Damage-Associated Molecular Pattern Signals in a Colorectal Cancer Model by Modualted Electrohyperthermia. Cell Stress and Chaperones, 20, 37-46.

[189]   Szasz, A. (2020) Towards the Immunogenic Hyperthermic Action: Modulated Electro-Hyperthermia, Clinical Oncology and Research. Science Repository, 3, 5-6.

[190]   Vancsik, T., Kovago, Cs., Kiss, E., et al. (2018) Modulated Electro-Hyperthermia Induced Loco-Regional and Systemic Tumor Destruction in Colorectal Cancer Allografts. Journal of Cancer, 9, 41-53.

[191]   Qin, W., Akutsu, Y., Andocs, G., et al. (2014) Modulated Electro-Hyperthermia Enhances Dendritic Cell Therapy through an Abscopal Effect in Mice. Oncology Reports, 32, 2373-2379.

[192]   Tsang, Y.-W., Huang, C.-C., Yang, K.-L., et al. (2015) Improving Immunological Tumor Microenvironment Using Electro-Hyperthermia Followed by Dendritic Cell Immunotherapy. BMC Cancer, 15, 708.

[193]   Szasz, A. (2019) Immune-Effects with Local Hyperthermia. Oncothermia Journal, 26, 139-148.

[194]   Szasz, O. (2020) Local Treatment with Systemic Effect: Abscopal Outcome. In: Szasz, A., Ed., Challenges and Solutions of Oncological Hyperthermia, Ch. 11, Cambridge Scholars, Cambridge, 192-205.

[195]   Van Gool, S.W., Makalowski, J., Feyen, O., Prix, L., Schirrmacher, V. and Stuecker, W. (2018) The Induction of Immunogenic Cell Death (ICD) during Maintenance Chemotherapy and Subsequent Multimodal Immunotherapy for Glioblastoma (GBM). Austin Oncology Case Reports, 3, 1-8.

[196]   Van Gool, S., Makalowski, J. and Feyen, O. (2019) Can We Monitor Immunogenic Cell Death (ICD) Induced with Modulated Electrohyperthermia and Oncolytivc Virus Injections? Oncothermia Journal, 26, 120-125.

[197]   Krenacs, T., Meggyeshazi, N., Forika, G., et al. (2020) Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. International Journal of Molecular Sciences, 21, 6270.

[198]   Szasz, A.M., Minnaar, C.A., Szentmartoni, Gy., et al. (2019) Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Frontiers in Oncology, 9, Article No. 1012.

[199]   Andocs, G., Renner, H., Balogh, L., Fonyad, L., Jakab, C. and Szasz, A. (2009) Strong Synergy of Heat, and Modulated Electro-Magnetic Field in Tumor Cell Killing, Study of HT29 Xenograft Tumors in a Nude Mice Model. Strahlentherapie und Onkologie, 185, 120-126.

[200]   Lee, S.-Y., Szigeti, G.P. and Szasz, A.M. (2019) Oncological Hyperthermia: The Correct Dosing in Clinical Applications. International Journal of Oncology, 54, 627-643.

[201]   Papp, E., Vancsik, T., Kiss, E. and Szasz, O. (2017) Energy Absorption by the Membrane Rafts in the Modulated Electro-Hyperthermia (mEHT). Open Journal of Biophysics, 7, 216-229.

[202]   Szasz, A. (2019) Thermal, and Nonthermal Effects of Radiofrequency on Living State, and Applications as an Adjuvant with Radiation Therapy. Journal of Radiation, and Cancer Research, 10, 1-17.;year=2019;volume=10;issue=1;spage=1;epage=17;aulast=Szasz

[203]   Szasz, A. (2020) Preface. In: Szasz A., Ed., Challenges and Solutions of Oncological Hyperthermia, Cambridge Scholars, Cambridge, 8-13.