Back
 AS  Vol.12 No.7 , July 2021
Comparative Analysis of the Genomes of Three Field Isolates of the Rice Blast Fungus Magnaporthe oryzae from Southern China
Abstract: Rice blast caused by Magnaporthe oryzae (M. oryzae) is one of the most destructive diseases, which causes significant rice yield losses and affects global food security. To better understand genetic variations among different isolates of M. oryzae in the nature field, we re-sequenced and analyzed the genomes of three field isolates, QJ08-2006, QJ10-10, and QJ10-3001, which showed distinct pathogenicity on Xin-Yin-Zhan, an elite variety in South China. Genome annotation indicated that these three isolates assemblies have similar genome sizes with 38.4 Mb, 38.3 Mb, and 38.4 Mb, respectively. The QJ08-2006 assembly has 2082 contigs with an N50 of 127.4 kb, the QJ10-10 assembly has 2239 contigs with an N50 of 105.13 kb, the QJ10-3001 assembly has 2025 contigs with an N50 of 133.16 kb. A total of 10,432 genes including 1408 putative secreted protein genes were identified from the annotated isolate QJ08-2006 genome, 10,418 genes including 1410 putative secreted protein genes were identified in QJ10-10, and 10,401 genes including 1420 putative secreted protein genes were identified in QJ10-3001. There are as many as 11,076 identical genes in these three isolates and contained only a few unique genes among three isolates, of which 277 unique genes in QJ08-2006 and 264 unique genes in QJ10-10, and 213 unique genes in QJ10-3001. Most of the predicted secreted protein genes had been identified, and the three re-sequenced strains contained 371, 369, and 387 small Indel, respectively. Avr genes were analyzed in several sequenced Magnaporthe strains, the results revealed that Avr-Pi9 and Avr-Piz-t were present in all the sequenced isolates. The isolates QJ08-2006 contained AvrPib, QJ10-10, and QJ10-3001 had an insertion of a Pot3 element in the promoter of the AvrPib gene. Our results showed that, the rapid dominancy of virulence mutant isolates via clonal propagation displayed in the field after the release of the elite variety Xin-Yin-Zhan.
Cite this paper: Chen, K. , Feng, J. , Chen, S. , Su, J. , Yang, J. , Wang, C. , Feng, A. , Chen, B. , Zhu#, X. and Wang#, W. (2021) Comparative Analysis of the Genomes of Three Field Isolates of the Rice Blast Fungus Magnaporthe oryzae from Southern China. Agricultural Sciences, 12, 713-725. doi: 10.4236/as.2021.127046.
References

[1]   Jantasuriyarat, C., Gowda, M., Haller, K., Hatfield, J., Lu, G., Lu, G.D., Stahlberg, E., Zhou, B., Li, H.M., Kim, H., Yu, Y., Dean, R.A., Wing, R.A., Soderlund, C. and Wang, G.L. (2005) Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction. Plant Physiology, 138, 105-115.
https://doi.org/10.1104/pp.104.055624

[2]   Valent, B. and Chumley, F.G. (1991) Molecular Genetic Analysis of the Rice Blast Fungus, Magnaporthe grisea. Annual Review of Phytopathology, 29, 443-467.
https://doi.org/10.1146/annurev.py.29.090191.002303

[3]   Couch, B.C. and Kohn, L.M. (2002) A Multilocus Gene Genealogy Concordant with Host Preference Indicates Segregation of a New Species, Magnaporthe oryzae, from M. grisea. Mycologia, 94, 683-693.
https://doi.org/10.1080/15572536.2003.11833196

[4]   Zhang, H., Zheng, X. and Zhang, Z. (2016) The Magnaporthe grisea Species Complex and Plant Pathogenesis. Molecuar Plant Pathology, 17, 796-804.
https://doi.org/10.1111/mpp.12342

[5]   Ebbole, D.J. (2007) Magnaporthe as a Model for Understanding Host-Pathogen Interactions. Annual Review of Phytopathology, 45, 437-456.
https://doi.org/10.1146/annurev.phyto.45.062806.094346

[6]   Savary, S., Willocquet, L., Pethybridge, S.J., Esker, P., McRoberts, N. and Nelson, A. (2019) The Global Burden of Pathogens and Pests on Major Food Crops. Nature Ecology & Evolution, 3, 430-439.
https://doi.org/10.1038/s41559-018-0793-y

[7]   Talbot, N.J. (2003) On the Trail of a Cereal Killer: Exploring the Biology of Magnaporthe grisea. Annual Review of Microbiology, 57, 177-202.
https://doi.org/10.1146/annurev.micro.57.030502.090957

[8]   Sesma, A. and Osbourn, A.E. (2004) The Rice Leaf Blast Pathogen Undergoes Developmental Processes Typical of Root-Infecting Fungi. Nature, 431, 582-586.
https://doi.org/10.1038/nature02880

[9]   Wilson, R.A. and Talbot, N.J. (2009) Fungal Physiology—A Future Perspective. Microbiology, 155, 3810-3815.
https://doi.org/10.1099/mic.0.035436-0

[10]   Dean, R.A., Talbot, N.J., Ebbole, D.J., Farman, M.L., Mitchell, T.K., Orbach, M.J., Thon, M., Kulkarni, R., Xu, J.R., Pan, H., Read, N.D., Lee, Y.H., Carbone, I., Brown, D., Oh, Y.Y., Donofrio, N., Jeong, J.S., Soanes, D.M., Djonovic, S., Kolomiets, E., et al. (2005) The Genome Sequence of the Rice Blast Fungus Magnaporthe grisea. Nature, 434, 980-986.
https://doi.org/10.1038/nature03449

[11]   Kim, S., Park, J., Park, S.Y., Mitchell, T.K. and Lee, Y.H. (2010) Identification and Analysis of in Planta Expressed Genes of Magnaporthe oryzae. BMC Genomics, 11, 104.
https://doi.org/10.1186/1471-2164-11-104

[12]   Orbach, M.J., Farrall, L., Sweigard, J.A., Chumley, F.G. and Valent, B. (2000) A Telomeric Avirulence Gene Determines Efficacy for the Rice Blast Resistance Gene Pita. Plant Cell, 12, 2019-2032.
https://doi.org/10.1105/tpc.12.11.2019

[13]   Kumar, J., Nelson, R.J. and Zeigler, R.S. (1999) Population Structure and Dynamics of Magnaporthe grisea in the Indian Himalayas. Genetics, 152, 971-984.
https://doi.org/10.1093/genetics/152.3.971

[14]   Bao, J., Chen, M., Zhong, Z., Tang, W., Lin, L., Zhang, X., Jiang, H., Zhang, D., Miao, C., Tang, H., Zhang, J., Lu, G., Ming, R., Norvienyeku, J., Wang, B. and Wang, Z. (2017) PacBio Sequencing Reveals Transposable Elements as a Key Contributor to Genomic Plasticity and Virulence Variation in Magnaporthe oryzae. Molecular Plant, 10, 1465-1468.
https://doi.org/10.1016/j.molp.2017.08.008

[15]   Zhong, Z., Chen, M., Lin, L., Han, Y., Bao, J., Tang, W., Lin, L., Lin, Y., Somai, R., Lu, L., Zhang, W., Chen, J., Hong, Y., Chen, X., Wang, B., Shen, W.C., Lu, G., Norvienyeku, J., Ebbole, D.J. and Wang, Z. (2018) Population Genomic Analysis of the Rice Blast Fungus Reveals Specific Events Associated with Expansion of Three Main Clades. ISME Journal, 12, 1867-1878.
https://doi.org/10.1038/s41396-018-0100-6

[16]   Yoshida, K., Saitoh, H., Fujisawa, S., Kanzaki, H., Matsumura, H., Yoshida, K., Tosa, Y., Chuma, I., Takano, Y., Win, J., Kamoun, S. and Terauchi, R. (2009) Association Genetics Reveals Three Novel Avirulence Genes from the Rice Blast Fungal Pathogen Magnaporthe oryzae. Plant Cell, 21, 1573-1591.
https://doi.org/10.1105/tpc.109.066324

[17]   Xue, M., Yang, J., Li, Z., Hu, S., Yao, N., Dean, R.A., Zhao, W., Shen, M., Zhang, H., Li, C., Liu, L., Cao, L., Xu, X., Xing, Y., Hsiang, T., Zhang, Z., Xu, J.R. and Peng, Y.L. (2012) Comparative Analysis of the Genomes of Two Field Isolates of the Rice Blast Fungus Magnaporthe oryzae. PLoS Genetics, 8, e1002869.
https://doi.org/10.1371/journal.pgen.1002869

[18]   Ma, L.J., van der Does, H.C., Borkovich, K.A., Coleman, J.J., Daboussi, M.J., Di, Pietro, A., Dufresne, M., Freitag, M., Grabherr, M., Henrissat, B., Houterman, P.M., Kang, S., et al. (2010) Comparative Genomics Reveals Mobile Pathogenicity Chromosomes in Fusarium. Nature, 464, 367-373.
https://doi.org/10.1038/nature08850

[19]   Chen, C., Lian, B., Hu, J., Zhai, H., Wang, X., Venu, R.C., Liu, E., Wang, Z., Chen, M., Wang, B., Wang, G.L., Wang, Z. and Mitchell, T.K. (2013) Genome Comparison of Two Magnaporthe oryzae Field Isolates Reveals Genome Variations and Potential Virulence Effectors. BMC Genomics, 14, 887.
https://doi.org/10.1186/1471-2164-14-887

[20]   Dong, Y., Li, Y., Zhao, M., Jing, M., Liu, X., Liu, M., Guo, X., Zhang, X., Chen, Y., Liu, Y., Liu, Y., Ye, W., Zhang, H., Wang, Y., Zheng, X., Wang, P. and Zhang, Z. (2015) Global Genome and Transcriptome Analyses of Magnaporthe oryzae Epidemic Isolate 98-06 Uncover Novel Effectors and Pathogenicity-Related Genes, Revealing Gene Gain and Lose Dynamics in Genome Evolution. PLoS Pathogens, 11, e1004801.
https://doi.org/10.1371/journal.ppat.1004801

[21]   Wu, J., Kou, Y., Bao, J., Li, Y., Tang, M., Zhu, X., Ponaya, A., Xiao, G., Li, J., Li, C., Song, M.Y., Cumagun, C.J., Deng, Q., Lu, G., Jeon, J.S., Naqvi, N.I. and Zhou, B. (2015) Comparative Genomics Identifies the Magnaporthe oryzae Avirulence Effector AvrPi9 That Triggers Pi9-Mediated Blast Resistance in Rice. New Phytologist, 206, 1463-1475.
https://doi.org/10.1111/nph.13310

[22]   Zhu, K.P., Bao, J.D., Zhang, L.H., Yang, X., Li, Y., Zhu, M.H., Lin, Q.Y., Zhao, A., Zhao, Z., Zhou, B. and Lu, G.D. (2017) Comparative Analysis of the Genome of the Field Isolate V86010 of the Rice Blast Fungus Magnaporthe oryzae from Philippines. Journal of Integrative Agriculture, 16, 60345-30357.
https://doi.org/10.1016/S2095-3119(16)61607-6

[23]   Fan, G., Zhang, K., Huang, H., Zhang, H., Zhao, A., Chen, L., Chen, R., Li, G., Wang, Z. and Lu, G.D. (2017) Multiprotein-Bridging Factor 1 Regulates Vegetative Growth, Osmotic Stress, and Virulence in Magnaporthe oryzae. Current Genetics, 63, 293-309.
https://doi.org/10.1007/s00294-016-0636-9

[24]   Al-Samarrai, T.H. and Schmid, J. (2000) A Simple Method for Extraction of Fungal Genomic DNA. Letters in Applied Microbiology, 30, 53-56.
https://doi.org/10.1046/j.1472-765x.2000.00664.x

[25]   Kurtz, S., Phillippy, A., Delcher, A.L., Smoot, M., Shumway, M., Antonescu, C. and Salzberg, S.L. (2004) Versatile and Open Software for Comparing Large Genomes. Genome Biology, 5, R12.
https://doi.org/10.1186/gb-2004-5-2-r12

[26]   Sonnhammer, E.L., von Heijne, G. and Krogh, A. (1998) A Hidden Markov Model for Predicting Transmembrane Helices in Protein Sequences. Proceedings International Conference Intelligent Systems Molecular Biology, Vol. 6, 175-182.

[27]   Petersen, T.N., Brunak, S., von Heijne, G. and Nielsen, H. (2011) SignalP 4.0: Discriminating Signal Peptides from Transmembrane Regions. Nature Methods, 8, 785-786.
https://doi.org/10.1038/nmeth.1701

[28]   Slater, G.S. and Birney, E. (2005) Automated Generation of Heuristics for Biological Sequence Comparison. BMC Bioinformatics, 6, 31.
https://doi.org/10.1186/1471-2105-6-31

[29]   Pearson, W.R. (1996) Effective Protein Sequence Comparison. Methods in Enzymology, 266, 227-258.
https://doi.org/10.1016/S0076-6879(96)66017-0

[30]   Wang, W., Su, J., Chen, K., Yang, J., Chen, S., Wang, C., Feng, A., Wang, Z., Wei, X., Zhu, X., Lu, G.D. and Zhou, B. (2021) Dynamics of the Rice Blast Fungal Population in the Field after Deployment of an Improved Rice Variety Containing Known Resistance Genes. Plant Disease, 105, 919-928.
https://doi.org/10.1094/PDIS-06-20-1348-RE

[31]   Kellis, M., Patterson, N., Birren, B., Berger, B. and Lander, E.S. (2004) Methods in Comparative Genomics: Genome Correspondence, Gene Identification and Regulatory Motif Discovery. Journal of Computational Biology, 11, 319-355.
https://doi.org/10.1094/PDIS-06-20-1348-RE

[32]   Novo, M., Bigey, F., Beyne, E., Galeote, V., Gavory, F., Mallet, S., Cambon, B., Legras, J.L., Wincker, P., Casaregola, S. and Dequin, S. (2009) Eukaryote-to-Eukaryote Gene Transfer Events Revealed by the Genome Sequence of the Wine Yeast Saccharomyces cerevisiae EC1118. Proceedings National Academy Sciences USA, 106, 16333-16338.
https://doi.org/10.1073/pnas.0904673106

[33]   Andersen, M.R., Salazar, M.P., Schaap, P.J., van de Vondervoort, P.J., Culley, D., Thykaer, J., Frisvad, J.C., Nielsen, K.F., Albang, R., Albermann, K., Berka, R.M., Braus, G.H., et al. (2011) Comparative Genomics of Citric-Acid-Producing Aspergillus niger ATCC 1015 versus Enzyme-Producing CBS 513.88. Genome Research, 21, 885-897.
https://doi.org/10.1101/gr.112169.110

[34]   Chuma, I., Isobe, C., Hotta, Y., Ibaragi, K., Futamata, N., Kusaba, M., Yoshida, K., Terauchi, R., Fujita, Y., Nakayashiki, H., Valent, B. and Tosa, Y. (2011) Multiple Translocation of the AVR-Pita Effector Gene among Chromosomes of the Rice Blast Fungus Magnaporthe oryzae and Related Species. PLoS Pathogens, 7, e1002147.
https://doi.org/10.1371/journal.ppat.1002147

[35]   Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X., Zhang, Z., Zhao, Q., Feng, Q., Zhang, H., Wang, Z., Wang, G., Han, B., Wang, Z. and Zhou, B. (2009) The Magnaporthe oryzae Avirulence Gene AvrPiz-t Encodes a Predicted Secreted Protein That Triggers the Immunity in Rice Mediated by the Blast Resistance Gene Piz-t. Molecular Plant-Microbe Interactions, 22, 411-420.
https://doi.org/10.1094/MPMI-22-4-0411

[36]   Zhang, S., Wang, L., Wu, W., He, L., Yang, X. and Pan, Q. (2015) Function and Evolution of Magnaporthe oryzae Avirulence Gene AvrPib Responding to the Rice Blast Resistance Gene Pib. Scientific Reports, 5, Article No. 11642.
https://doi.org/10.1038/srep11642

[37]   Olukayode, T., Quime, B., Shen, Y.C., Yanoria, M.J., Zhang, S., Yang, J., Zhu, X., Shen, W.C., von Tiedemann, A. and Zhou, B. (2019) Dynamic Insertion of Pot3 in AvrPib Prevailing in a Field Rice Blast Population in the Philippines Led to the High Virulence Frequency against the Resistance Gene Pib in Rice. Phytopathology, 109, 870-877.
https://doi.org/10.1094/PHYTO-06-18-0198-R

[38]   Kanzaki, H., Yoshida, K., Saitoh, H., Fujisaki, K., Hirabuchi, A., Alaux, L., Fournier, E., Tharreau, D. and Terauchi, R. (2012) Arms Race Co-Evolution of Magnaporthe oryzae AVR-Pik and Rice Pik Genes Driven by Their Physical Interactions. Plant Journal, 72, 894-907.
https://doi.org/10.1111/j.1365-313X.2012.05110.x

[39]   Su, J., Wang, W., Han, J., Chen, S., Wang, C., Zeng, L., Feng, A., Yang, J., Zhou, B. and Zhu, X. (2015) Functional Divergence of Duplicated Genes Results in a Novel Blast Resistance Gene Pi50 at the Pi2/9 Locus. Theoretical and Applied Genetics, 128, 2213-2225.
https://doi.org/10.1007/s00122-015-2579-9

[40]   Deng, Y., Zhai, K., Xie, Z., Yang, D., Zhu, X., Liu, J., Wang, X., Qin, P., Yang, Y., Zhang, G., Li, Q., Zhang, J., Wu, S., Milazzo, J., Mao, B., Wang, E., Xie, H., Tharreau, D. and He, Z. (2017) Epigenetic Regulation of Antagonistic Receptors Confers Rice Blast Resistance with Yield Balance. Science, 355, 962-965.
https://doi.org/10.1126/science.aai8898

[41]   Heath, M.C. (1981) A Generalized Concept of Host-Parasite Specificity. Phytopathology, 71, 1121-1123.
https://doi.org/10.1094/Phyto-71-1121

[42]   Kang, S., Sweigard, J.A. and Valent, B. (1995) The PWL Host Specificity Gene Family in the Blast Fungus Magnaporthe grisea. Molecular Plant-Microbe Interactions, 8, 939-948.
https://doi.org/10.1094/MPMI-8-0939

[43]   Miki, S., Matsui, K., Kito, H., Otsuka, K., Ashizawa, T., Yasuda, N., Fukiya, S., Sato, J., Hirayae, K., Fujita, Y., Nakajima, T., Tomita, F. and Sone, T. (2009) Molecular Cloning and Characterization of the AVR-Pia Locus from a Japanese Field Isolate of Magnaporthe oryzae. Molecular Plant Pathology, 10, 361-374.
https://doi.org/10.1111/j.1364-3703.2009.00534.x

[44]   Ribot, C., Césari, S., Abidi, I., Chalvon, V., Bournaud, C., Vallet, J., Lebrun, M.H., Morel, J.B. and Kroj, T. (2013) The Magnaporthe oryzae Effector AVR1-CO39 Is Translocated into Rice Cells Independently of a Fungal-Derived Machinery. Plant Journal, 74, 1-12.
https://doi.org/10.1111/tpj.12099

 
 
Top