OJCD  Vol.11 No.2 , June 2021
Review of Photoacoustic Malaria Diagnostic Techniques
Abstract: Malaria is one of the leading causes of mortality and morbidity in developing countries. Accurate and complete diagnosis is key for effective treatment of the disease. However, mainstream malaria diagnostic techniques suffer from a number of shortcomings. There is therefore an urgent need for development of new and more efficient techniques for malaria diagnosis. In vivo Photoacoustic spectroscopy is an emerging technique, which has great potential of delivering a nearly ideal method for early diagnosis of the disease. The technique promises to be highly sensitive and specific. In this paper, a description of photoacoustic malaria sensing is given. This is followed by a review of photoacoustic-based malaria diagnostic techniques and suggestions for future improvements.
Cite this paper: Memeu, D. , Sallorey, A. , Maina, C. and Kinyua, D. (2021) Review of Photoacoustic Malaria Diagnostic Techniques. Open Journal of Clinical Diagnostics, 11, 59-75. doi: 10.4236/ojcd.2021.112005.

[1]   World Health Organization (2016) World Malaria Report 2015. World Health Organization, Geneva.

[2]   World Health Organization (2003) The Africa Malaria Report 2003. World Health Organization, Geneva.

[3]   Kumar, S., Guha, M., Choubey, V., Maity, P. and Bandyopadhyay, U. (2007) Antimalarial Drugs Inhibiting Hemozoin (β-Hematin) Formation: A Mechanistic Update. Life Sciences, 80, 813-828.

[4]   Samson, E.B., Goldschmidt, B.S., Whiteside, P.J.D., et al. (2012) Photoacoustic Spectroscopy of β-Hematin. Journal of Optics, 14, 065302.

[5]   Oliveira, M.F., Silva, J.R., Dansa-Petretski, M., et al. (2000) Hemozoin Formation in the Midgut of the Blood-Sucking Insect Rhodniusprolixus. FEBS Letters, 477, 95-98.

[6]   Oliveira, M.F., Kycia, S.W., Gomez, A., et al. (2005) Structural and Morphological Characterization of Hemozoin Produced by Schistosomamansoni and Rhodniusprolixus. FEBS Letters, 579, 6010-6016.

[7]   White, N.J. (2008) Plasmodium Knowlesi: The Fifth Human Malaria Parasite. Clinical Infectious Diseases, 46, 172-173.

[8]   Ngwa, C.J., Rosa, T. and Pradel, G. (2016) The Biology of Malaria Gametocytes. IntechOpen.

[9]   Cowman, A.F. and Crabb, B.S. (2006) Invasion of Red Blood Cells by Malaria Parasites. Cell, 124, 755-766.

[10]   Wongsrichanalai, C., Barcus, M.J., Muth, S., Sutamihardja, A. and Wernsdorfer, W.H. (2007) A Review of Malaria Diagnostic Tools: Microscopy and Rapid Diagnostic Test (RDT). American Journal of Tropical Medicine and Hygiene, 77, 119-127.

[11]   Makler, M.T., Palmer, C.J. and Ager, A.L. (1998) A Review of Practical Techniques for the Diagnosis of Malaria. Annals of Tropical Medicine and Parasitology, 92, 419-434.

[12]   Johnston, S.P., Pieniazek, N.J., Xayavong, M.V., Slemenda, S.B., Wilkins, P.P. and da Silva, A.J. (2006) PCR as a Confirmatory Technique for Laboratory Diagnosis of Malaria. Journal of Clinical Microbiology, 44, 1087-1089.

[13]   Moody, A. (2002) Rapid Diagnostic Tests for Malaria Parasites. Clinical Microbiology Reviews, 15, 66-78.

[14]   Bélisle, J.M., Costantino, S., Leimanis, M.L., et al. (2008) Sensitive Detection of Malaria Infection by Third Harmonic Generation Imaging. Biophysical Journal, 94, L26-L28.

[15]   Newman, D.M., Heptinstall, J., Matelon, R.J., et al. (2008) A Magneto-Optic Route toward the in Vivo Diagnosis of Malaria: Preliminary Results and Preclinical Trial Data. Biophysical Journal, 95, 994-1000.

[16]   Memeu, D.M., Kaduki, K.A., Mjomba, A., Muriuki, N.S. and Gitonga, L. (2013) Detection of Plasmodium Parasites from Images of Thin Blood Smears. Open Journal of Clinical Diagnostics, 3, 183-194.

[17]   Gitonga, L., Memeu, D.M., Kaduki, K.A., Kale, M.A.C. and Muriuki, N.S. (2014) Determination of Plasmodium Parasite Life Stages and Species in Images of Thin Blood Smears Using Artificial Neural Network. Open Journal of Clinical Diagnostics, 4, 78-88.

[18]   Omucheni, D.L., Kaduki, K.A., Bulimo, W.D. and Angeyo, H.K. (2014) Application of Principal Component Analysis to Multispectral-Multimodal Optical Image Analysis for Malaria Diagnostics. Malaria Journal, 13, Article No. 485.

[19]   Merdasa, A., Brydegaard, M., Svanberg, S. and Zoueu, J.T. (2013) Staining-Free Malaria Diagnostics by Multispectral and Multimodality Light-Emitting-Diode Microscopy. Journal of Biomedical Optics, 18, 036002.

[20]   Saha, R.K., Karmakar, S. and Roy, M. (2012) Computational Investigation on the Photoacoustics of Malaria Infected Red Blood Cells. PLoS ONE, 7, e51774.

[21]   Lukianova-Hleb, E.Y., Campbell, K.M., Constantinou, P.E., et al. (2014) Hemozoin-Generated Vapor Nanobubbles for Transdermal Reagent- and Needle-Free Detection of Malaria. Proceedings of the National Academy of Sciences of the United States of America, 111, 900-905.

[22]   Cai, C., Carey, K.A., Nedosekin, D.A., et al. (2016) In Vivo Photoacoustic Flow Cytometry for Early Malaria Diagnosis: Photoacoustic Flow Cytometry for Malaria Diagnosis. Cytometry Part A, 89, 531-542.

[23]   Lukianova-Hleb, E., Bezek, S., Szigeti, R., et al. (2015) Transdermal Diagnosis of Malaria Using Vapor Nanobubbles. Emerging Infectious Diseases, 21, 1122-1127.

[24]   Bell, A.G. (1880) ART. XXXIV.—On the Production and Reproduction of Sound by Light. American Journal of Science, 20, 305-324.

[25]   Zhang, E., Laufer, J. and Beard, P. (2008) Backward-Mode Multiwavelength Photoacoustic Scanner Using a Planar Fabry-Perot Polymer Film Ultrasound Sensor for High-Resolution Three-Dimensional Imaging of Biological Tissues. Applied Optics, 47, 561-577.

[26]   Song, L., Maslov, K.I., Bitton, R., Shung, K.K. and Wang, L.V. (2008) Fast 3-D Dark-Field Reflection-Mode Photoacoustic Microscopy in Vivo with a 30-MHz Ultrasound Linear Array. Journal of Biomedical Optics, 13, 054028.

[27]   Favazza, C.P., Wang, L.V. and Cornelius, L.A. (2011) In Vivo Functional Photoacoustic Microscopy of Cutaneous Microvasculature in Human Skin. Journal of Biomedical Optics, 16, 026004.

[28]   Favazza, C.P., Wang, L.V., Jassim, O.W. and Cornelius, L.A. (2011) In Vivo Photoacoustic Microscopy of Human Cutaneous Microvasculature and a Nevus. Journal of Biomedical Optics, 16, 016015.

[29]   Silverman, R.H., Kong, F., Chen, Y.C., et al. (2010) High-Resolution Photoacoustic Imaging of Ocular Tissues. Ultrasound in Medicine and Biology, 36, 733-742.

[30]   Hu, S., Rao, B., Maslov, K. and Wang, L.V. (2010) Label-Free Photoacoustic Ophthalmic Angiography. Optics Letters, 35, 1-3.

[31]   de La Zerda, A., Paulus, Y.M., Teed, R., et al. (2010) Photoacoustic Ocular Imaging. Optics Letters, 35, 270-272.

[32]   Zhang, H.F., Puliafito, C.A. and Jiao, S. (2011) Photoacoustic Ophthalmoscopy for in Vivo Retinal Imaging: Current Status and Prospects. Ophthalmic Surgery, Lasers and Imaging Retina, 42, S106-S115.

[33]   Manohar, S., Vaartjes, S.E., van Hespen, J.C.G., et al. (2007) Initial Results of in Vivo Non-Invasive Cancer Imaging in the Human Breast Using Near-Infrared Photoacoustics. Optics Express, 15, 12277-12285.

[34]   Oraevsky, A.A., Karabutov, A.A., Solomatin, S.V., et al. (2001) Laser Optoacoustic Imaging of Breast Cancer in Vivo. Proceedings Volume 4256, Biomedical Optoacoustics II, San Jose, 6-16.

[35]   Kruger, R.A., Lam, R.B., Reinecke, D.R., Del Rio, S.P. and Doyle, R.P. (2010) Photoacoustic Angiography of the Breast. Medical Physics, 37, 6096-6100.

[36]   Piras, D., Xia, W., Steenbergen, W., van Leeuwen, T.G. and Manohar, S. (2010) Photoacoustic Imaging of the Breast Using the Twente Photoacoustic Mammoscope: Present Status and Future Perspectives. IEEE Journal of Selected Topics in Quantum Electronics, 16, 730-739.

[37]   Manohar, S., Kharine, A., van Hespen, J.C.G., Steenbergen, W. and van Leeuwen, T.G. (2005) The Twente Photoacoustic Mammoscope: System Overview and Performance. Physics in Medicine & Biology, 50, 2543.

[38]   Zhang, J., Yang, S., Ji, X., Zhou, Q. and Xing, D. (2014) Characterization of Lipid-Rich Aortic Plaques by Intravascular Photoacoustic Tomography: Ex Vivo and in Vivo Validation in a Rabbit Atherosclerosis Model with Histologic Correlation. Journal of the American College of Cardiology, 64, 385-390.

[39]   Wang, B., Su, J.L., Amirian, J., Litovsky, S.H., Smalling, R. and Emelianov, S. (2010) Detection of Lipid in Atherosclerotic Vessels Using Ultrasound-Guided Spectroscopic Intravascular Photoacoustic Imaging. Optics Express, 18, 4889-4897.

[40]   Jansen, K., van Soest, G. and van der Steen, A.F. (2014) Intravascular Photoacoustic Imaging: A New Tool for Vulnerable Plaque Identification. Ultrasound in Medicine and Biology, 40, 1037-1048.

[41]   Allen, T.J. and Beard, P.C. (2009) Photoacoustic Characterisation of Vascular Tissue at NIR Wavelengths. Proceedings Volume 7177, Photons plus Ultrasound: Imaging and Sensing 2009, San Jose, 71770A.

[42]   Jansen, K., Wu, M., van der Steen, A.F. and van Soest, G. (2014) Photoacoustic Imaging of Human Coronary Atherosclerosis in Two Spectral Bands. Photoacoustics, 2, 12-20.

[43]   Allen, T.J., Beard, P.C., Hall, A., Dhillon, A.P. and Owen, J.S. (2012) Spectroscopic Photoacoustic Imaging of Lipid-Rich Plaques in the Human Aorta in the 740 to 1400 nm Wavelength Range. Journal of Biomedical Optics, 17, 061209.

[44]   Funke, A. (2010) On the Feasibility of Photoacoustic Guidance of High Intensity Focused Ultrasound. Optics [physics.optics]. Université Pierre et Marie Curie, Paris.

[45]   Bossy, E., Daoudi, K. and Boccara, A.-C. (2006) Time Reversal of Photoacoustic Waves. Applied Physics Letters, 89, 184108.

[46]   Xia, J., Yao, J. and Wang, L.V. (2014) Photoacoustic Tomography: Principles and Advances. Progress in Electromagnetics Research, 147, 1-22.

[47]   Hu, S. (2010) Optical-Resolution Photoacoustic Microscopy. Washington University, St. Louis.

[48]   Maslov, K., Zhang, H.F., Hu, S. and Wang, L.V. (2008) Optical-Resolution Photoacoustic Microscopy for in Vivo Imaging of Single Capillaries. Optics Letters, 33, 929-931.

[49]   Wang, L.V. and Hu, S. (2012) Photoacoustic Tomography: In Vivo Imaging from Organelles to Organs. Science, 335, 1458-1462.

[50]   Fan, Y., Mandelis, A., Spirou, G. and Alex Vitkin, I. (2004) Development of a Laser Photothermoacoustic Frequency-Swept System for Subsurface Imaging: Theory and Experiment. The Journal of the Acoustical Society of America, 116, 3523-3533.

[51]   Mohajerani, P., Kellnberger, S. and Ntziachristos, V. (2014) Frequency Domain Optoacoustic Tomography Using Amplitude and Phase. Photoacoustics, 2, 111-118.

[52]   Maslov, K.I. and Wang, L.V. (2008) Photoacoustic Imaging of Biological Tissue with Intensity-Modulated Continuous-Wave Laser. Journal of Biomedical Optics, 13, 024006.

[53]   Baddour, N. (2008) Theory and Analysis of Frequency-Domain Photoacoustic Tomography. The Journal of the Acoustical Society of America, 123, 2577-2590.

[54]   LeBoulluec, P., Liu, H. and Yuan, B. (2013) A Cost-Efficient Frequency-Domain Photoacoustic Imaging System. American Journal of Physics, 81, 712.

[55]   Yao, J. and Wang, L.V. (2014) Sensitivity of Photoacoustic Microscopy. Photoacoustics, 2, 87-101.

[56]   Beard, P. (2011) Biomedical Photoacoustic Imaging. Interface Focus, rsfs20110028.

[57]   Guo, Z., Hu, S. and Wang, L.V. (2010) Calibration-Free Absolute Quantification of Optical Absorption Coefficients Using Acoustic Spectra in 3D Photoacoustic Microscopy of Biological Tissue. Optics Letters, 35, 2067-2069.

[58]   Zhou, Y., Yao, J., Maslov, K.I. and Wang, L.V. (2014) Calibration-Free Absolute Quantification of Particle Concentration by Statistical Analyses of Photoacoustic Signals in Vivo. Journal of Biomedical Optics, 19, 037001.

[59]   Laufer, J., Elwell, C., Delpy, D. and Beard, P. (2005) Measurements of Absolute Blood Oxygen Saturation Using Pulsed Near-Infrared Photoacoustic Spectroscopy: Accuracy and Resolution. Physics in Medicine & Biology, 50, 4409-4428.

[60]   Laufer, J., Cox, B., Zhang, E. and Beard, P. (2010) Quantitative Determination of Chromophore Concentrations from 2D Photoacoustic Images Using a Nonlinear Model-Based Inversion Scheme. Applied Optics, 49, 1219-1233.

[61]   Bauer, A.Q., Nothdurft, R.E., Erpelding, T.N., Wang, L.V. and Culver, J.P. (2011) Quantitative Photoacoustic Imaging: Correcting for Heterogeneous Light Fluence Distributions Using Diffuse Optical Tomography. Journal of Biomedical Optics, 16, 096016.

[62]   Laufer, J., Delpy, D., Elwell, C. and Beard, P. (2007) Quantitative Spatially Resolved Measurement of Tissue Chromophore Concentrations Using Photoacoustic Spectroscopy: Application to the Measurement of Blood Oxygenation and Haemoglobin Concentration. Physics in Medicine & Biology, 52, 141-168.

[63]   Cox, B.T., Laufer, J.G., Beard, P.C. and Arridge, S.R. (2012) Quantitative Spectroscopic Photoacoustic Imaging: A Review. Journal of Biomedical Optics, 17, Article No. 061202.

[64]   Galanzha, E.I., Shashkov, E.V., Kelly, T., Kim, J.-W., Yang, L. and Zharov, V.P. (2009) In Vivo Magnetic Enrichment and Multiplex Photoacoustic Detection of Circulating Tumour Cells. Nature Nanotechnology, 4, 855-860.

[65]   Galanzha, E.I., Shashkov, E.V., Spring, P.M., Suen, J.Y. and Zharov, V.P. (2009) In Vivo, Noninvasive, Label-Free Detection and Eradication of Circulating Metastatic Melanoma Cells Using Two-Color Photoacoustic Flow Cytometry with a Diode Laser. Cancer Research, 69, 7926-7934.

[66]   Zharov, V.P., Galanzha, E.I., Shashkov, E.V., Khlebtsov, N.G. and Tuchin, V.V. (2006) In Vivo Photoacoustic Flow Cytometry for Monitoring of Circulating Single Cancer Cells and Contrast Agents. Optics Letters, 31, 3623-3625.

[67]   Galanzha, E.I., Kim, J. and Zharov, V.P. (2009) Nanotechnology-Based Molecular Photoacoustic and Photothermal Flow Cytometry Platform for In-Vivo Detection and Killing of Circulating Cancer Stem Cells. Journal of Biophotonics, 2, 725-735.

[68]   Sergey, A.T. and Andreas, M. (2006) Fourier-Domain Biophotoacoustic Subsurface Depth Selective Amplitude and Phase Imaging of Turbid Phantoms and Biological Tissue. Journal of Biomedical Optics, 11, 1083-3668.

[69]   Edem, D., Bahman, L., Choi, S.S., Andreas, M., Wei, S. and Liu, F.-F. (2017) Quantitative Phase-Filtered Wavelength-Modulated Differential Photoacoustic Radar Tumor Hypoxia Imaging toward Early Cancer Detection. Journal of Biophotonics, 10, 1134-1142.

[70]   Sung, S. (Sean), Mandelis, A., Xinxin, G., Bahman, L., Stephan, K. and Vasilis, N. (2015) Wavelength-Modulated Differential Photoacoustic Spectroscopy (WM-DPAS) for Noninvasive Early Cancer Detection and Tissue Hypoxia Monitoring. Journal of Biophotonics, 9, 388-395.

[71]   Laufer, J., Zhang, E. and Beard, P. (2007) Quantitative in-Vivo Measurements of Blood Oxygen Saturation Using Multiwavelength Photoacoustic Imaging. Proceedings Volume 6437, Photons Plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, San Jose, 64371Z.

[72]   Wang, X., Xie, X., Ku, G., Wang, L.V. and Stoica, G. (2006) Noninvasive Imaging of Hemoglobin Concentration and Oxygenation in the Rat Brain Using High-Resolution Photoacoustic Tomography. Journal of Biomedical Optics, 11, 024015.

[73]   Zhang, H.F., Maslov, K., Sivaramakrishnan, M., Stoica, G. and Wang, L.V. (2007) Imaging of Hemoglobin Oxygen Saturation Variations in Single Vessels in Vivo Using Photoacoustic Microscopy. Applied Physics Letters, 90, Article No. 053901.

[74]   Song, W., Wei, Q., Liu, W., et al. (2015) A Combined Method to Quantify the Retinal Metabolic Rate of Oxygen Using Photoacoustic Ophthalmoscopy and Optical Coherence Tomography. Scientific Reports, 4, Article No. 6525.

[75]   Tang, M., Zhou, Y., Zhang, R. and Wang, L.V. (2015) Noninvasive Photoacoustic Microscopy of Methemoglobin in Vivo. Journal of Biomedical Optics, 20, Article No. 036007.

[76]   Wang, L., Maslov, K. and Wang, L.V. (2013) Single-Cell Label-Free Photoacoustic Flowoxigraphy in Vivo. Proceedings of the National Academy of Sciences of the United States of America, 110, 5759-5764.

[77]   Winkler, A.M., Maslov, K. and Wang, L.V. (2013) Towards Single Molecule Detection Using Photoacoustic Microscopy. Proceedings Volume 8581, Photons plus Ultrasound: Imaging and Sensing 2013, San Francisco, 85811A.

[78]   Tuchin, V.V. (2011) Advanced Optical Flow Cytometry: Methods and Disease Diagnoses. John Wiley & Sons, Hoboken.

[79]   Wang, T., Nandy, S., Salehi, H.S., Kumavor, P.D. and Zhu, Q. (2014) A Low-Cost Photoacoustic Microscopy System with a Laser Diode Excitation. Biomedical Optics Express, 5, 3053-5058.

[80]   Allen, T.J. and Beard, P.C. (2007) Dual Wavelength Laser Diode Excitation Source for 2D Photoacoustic Imaging. Proceedings Volume 6437, Photons plus Ultrasound: Imaging and Sensing 2007: The Eighth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-Optics, San Jose, 64371U.

[81]   Kolkman, R.G.M., Steenbergen, W. and van Leeuwen, T.G. (2006) In Vivo Photoacoustic Imaging of Blood Vessels with a Pulsed Laser Diode. Lasers in Medical Science, 21, 134-139.

[82]   Allen, T.J. and Beard, P.C. (2013) Light Emitting Diodes as an Excitation Source for Biomedical Photoacoustics. Proceedings Volume 8581, Photons plus Ultrasound: Imaging and Sensing 2013, San Francisco, 85811F.

[83]   Deán-Ben, X.L. and Razansky, D. (2013) Functional Optoacoustic Human Angiography with Handheld Video Rate Three Dimensional Scanner. Photoacoustics, 1, 68-73.

[84]   Zhou, Y., Li, G., Zhu, L., Li, C., Cornelius, L.A. and Wang, L.V. (2015) Handheld Photoacoustic Probe to Detect Both Melanoma Depth and Volume at High Speed in Vivo. Journal of Biophotonics, 8, 961-967.

[85]   Singh, M.K.A., Steenbergen, W. and Manohar, S. (2016) Handheld Probe-Based Dual Mode Ultrasound/Photoacoustics for Biomedical Imaging. In: Olivo, M. and Dinish, U., Eds., Frontiers in Biophotonics for Translational Medicine, Vol. 3, Springer, Singapore, 209-247.

[86]   Daoudi, K., van den Berg, P.J., Rabot, O., et al. (2014) Handheld Probe Integrating Laser Diode and Ultrasound Transducer Array for Ultrasound/Photoacoustic Dual Modality Imaging. Optics Express, 22, 26365.