Back
 JACEN  Vol.10 No.3 , August 2021
Characterization of the Allelopathic Potential of Sugarcane Leaves and Roots
Abstract: Sugarcane cultivars that are currently planted are the result of genetic improvement focused on increased crop yield. However, this selection and genetic alteration reduced the competitive potential of sugarcane, as well as its allelopathic capabilities. Many members of the Poaceae family are highly allelopathic. Thus, the objective of this study was to characterize the allelopathic potential of two sugarcane cultivars (CTC 2 and IAC 91109) by bioassay-guided fractionation, isolation, and identification of significant phytotoxins, including those that are lipophilic. For both leaves and roots, alpha-linolenic and linoleic acid were found to be the most phytotoxic compounds found with this approach. Both compounds were phytotoxic when applied in soil and caused light-independent cellular leakage of treated cucumber cotyledon discs. We conclude that some of the phytotoxic effects of sugarcane residues in soil are due to the combined action of alpha-linolenic and linoleic acid.
Cite this paper: Hijano, N. , Nepomuceno, M. , Cantrell, C. , Duke, S. and Alves, P. (2021) Characterization of the Allelopathic Potential of Sugarcane Leaves and Roots. Journal of Agricultural Chemistry and Environment, 10, 257-274. doi: 10.4236/jacen.2021.103016.
References

[1]   Takim, F.O., Fadayomi, O., Alabi, M.A. and Olawuyi, O.J. (2014) Impact of Natural Weed Infestation on the Performance of Selected Sugarcane Varieties in the Southern Guinea Savanna of Nigeria. Ethiopian Journal of Environmental Studies and Management, 7, 279-288.
https://doi.org/10.4314/ejesm.v7i3.7

[2]   Kuva, M.A., Gravenna, R., Pitelli, R.A., Chistoffoleti, P.J. and Alves, P.L.C.A. (2001) Períodos de interferência das plantas daninhas na cultura da cana-de-acúcar. II Capim-braquiária (Brachiaria decumbens). Planta Daninha, 19, 323-330.
https://doi.org/10.1590/S0100-83582001000300003

[3]   Rice, E.L. (1984) Allelopathy. 2nd Edition, Academic Press, New York.

[4]   Duke, S.O. (2015) Proving Allelopathy in Crop-Weed Interactions. Weed Science, 63, 121-132.
https://doi.org/10.1614/WS-D-13-00130.1

[5]   Kuva, M.A., Pitelli, R.A., Salgado, T.P. and Alves, P.L.C.A. (2007) Fitosociologia de communidades de plantas daninhas em agroeossistemas de cana crua. Planta Daninha, 25, 501-511.
https://doi.org/10.1590/S0100-83582007000300009

[6]   Kuva, M.A., Ferraudo, A.S., Pitelli, R.A., Alves, P.L.C.A. and Salgado, T.P. (2008) Padroes de infestacao de comunidades de plantas daninhas no agroecossistema de cana-crua. Planta Daninha, 26, 549-557.
https://doi.org/10.1590/S0100-83582008000300010

[7]   Kuva, M.A., Pitelli, R.A., Alves, P.L.C.A., Salgado, T.P. and Pavani, M.C.M.D. (2008) Banco de sementes de plantas daninhas e sua correlacao com a flora estabelecida no agroecossistema cana-crua. Planta Daninha, 26, 735-744.
https://doi.org/10.1590/S0100-83582008000400004

[8]   Ferreira, R.V., Contato, E.D., Kuva, M.A., Ferraudo, A.S., Alves, P.L.C.A., Magario, F.B. and Salgado, T.P. (2011) Organizacao das comunidades infestantes de plantas daninhas na cultura da cana-de-acúcar em agrupamentos-padrao. Planta Daninha, 29, 363-371.
https://doi.org/10.1590/S0100-83582011000200014

[9]   Viator, R.P., Johnson, R.M., Grimm, C.C. and Richard, E.P. (2006) Allelopathic, Autotoxic, and Hormetic Effects of Postharvest Sugarcane Residues. Agronomy Journal, 98, 1526-1531.
https://doi.org/10.2134/agronj2006.0030

[10]   Majeed, A., Muhammad, Z., Hussain, M. and Ahmad, H. (2017) In Vitro Allelopathic Effect of Aqueous Extracts of Sugarcane on Germination Parameters in Wheat. Acta agriculturae Slovenica, 109, 349-356.
https://doi.org/10.14720/aas.2017.109.2.18

[11]   Sampietro, D.A. and Vattuone, M.A. (2006) Sugarcane Straw and Its Phytochemicals as Growth Regulators of Weed and Crop Plants. Plant Growth Regulation, 48, 21-27.
https://doi.org/10.1007/s10725-005-5135-9

[12]   Sampietro, D.A. and Vattuone, M.A. (2006) Nature of the Interference Mechanism of Sugarcane (Saccharum officinarum L.) Straw. Plant and Soil, 280, 157-169.
https://doi.org/10.1007/s11104-005-2856-5

[13]   Sampietro, D.A., Vattuone, M.A. and Isla, M.I. (2006) Plant Growth Inhibitors Isolated from Sugarcane (Saccharum officinarum L.) Straw. Journal of Plant Physiology, 163, 837-846.
https://doi.org/10.1016/j.jplph.2005.08.002

[14]   Sampietro, D.A., Soberón, J.R. and Vattuone, M.A. (2007) Effects of Sugarcane Straw Allelochemicals on Growth and Physiology of Crops and Weeds. Allelopathy Journal, 19, 351-360.

[15]   Sampietro, D.A., Soberón, J.R., Sgariglia, M.A., Quiroga, E.N. and Vattuone, M.A (2007) Allelopathic Plants: 17. Sugarcane (Saccharum officinarum L.). Allelopathy Journal, 20, 243-250.

[16]   Sampietro, D.A., Sgariglia, M.A., Soberón, J.R., Quiroga, E.N. and Vattuone, M.A. (2007) Role of Sugarcane Straw Allelochemicals in the Growth Suppression of Arrowleaf Sida. Environmental and Experimental Botany, 60, 495-503.
https://doi.org/10.1016/j.envexpbot.2007.02.002

[17]   Mattice, J., Lavy, T., Skuiman, B. and Dilday, R. (1998) Searching for Allelochemicals in Rice That Control Ducksalad. In: Olofsdotter, M., Ed., Allelopathy in Rice, International Rice Research Institute, Philippines, 81-98.

[18]   Mattice, J.D., Dilday, R.H., Gbur, E.E. and Skulman, B.W. (2001) Barnyardgrass Growth Inhibition with Rice Using High-Performance Liquid Chromatography to Identify Rice Accession Activity. Agronomy Journal, 93, 8-11.
https://doi.org/10.2134/agronj2001.9318

[19]   Macías, F.A, Oliva, R.M., Simonet, A.M. and Galindo, J.C.G. (1998) What Are Allelochemicals? In: Olofsdotter, M., Ed., Allelopathy in Rice, International Rice Research Institute, Philippines, 69-79.

[20]   Duke, S.O., Owens, D.K. and Dayan, F.E. (2019) Natural Product-Based Chemical Herbicides. In: Korres, N.E., Burgos, N.R. and Duke, S.O., Eds., Weed Control: Sustainability, Hazards and Risks in Cropping Systems Worldwide, CRC Press, Boca Raton, 153-165.
https://doi.org/10.1201/9781315155913-8

[21]   Wu, J.-T., Chiang, Y.-R., Huang, W.-Y. and Jane, W.-N. (2006) Cytotoxic Effects of Free Fatty Acids on Phytoplankton Algae and Cyanobacteria. Aquatic Toxicology, 80, 338-345.
https://doi.org/10.1016/j.aquatox.2006.09.011

[22]   Gallardo-Williams, M.T., Geiger, C.L., Pidala, J.A. and Martin, D.F. (2002) Essential Fatty Acids and Phenolic Acids form Extract and Leachate of Southern Cattail (Typha domingensis P.). Phytochemistry, 59, 305-308.
https://doi.org/10.1016/S0031-9422(01)00449-6

[23]   Dayan, F.E., Rimando, A.M., Pan, Z., Baerson, S.R., Gimsing, A.-L. and Duke, S.O. (2010) Molecules of Interest: Sorgoleone. Phytochemistry, 71, 1032-1039.
https://doi.org/10.1016/j.phytochem.2010.03.011

[24]   Silva, F.M.L., Donega, M.A., Cerdeira, A.L., Corniani, N., Velini, E.D., Cantrell, C.L., Dayan, F.E., Coelho, M.N., Shea, K. and Duke, S.O. (2014) Roots of the Invasive Species Carduus nutans and C. acanthoides L. Produce Large Amounts of Aplotaxene, a Possible Allelochemical. Journal of Chemical Ecology, 40, 276-284.
https://doi.org/10.1007/s10886-014-0390-8

[25]   Yamauti, M. (2014) Infestacao de plantas daninhas em canaviai: Efeito do ambiente de producao e do Sistema de colheita, potencial alelopático de cultivares e benzoxalinona. Thesis, State University of Sao Paulo Julio de Mesquita Filho, Jaboticabal.

[26]   Dayan, F.E., Romagni, J.G. and Duke, S.O. (2000) Investigating the Mode of Action of Natural Phytotoxins. Journal of Chemical Ecology, 26, 2079-2094.
https://doi.org/10.1023/A:1005512331061

[27]   Wang, Y., Sunwoo, H., Cherian, G. and Sim, J.S. (2000) Fatty Acid Determination in Chicken Egg Yolk: A Comparison of Different Methods. Poultry Science, 79, 1168-1171.
https://doi.org/10.1093/ps/79.8.1168

[28]   Dayan, F.E. and Watson, S.B. (2011) Plant Cell Membrane as a Marker for Light-Dependent and Light-Independent Herbicide Mechanisms of Action. Pesticide Biochemistry and Physiology, 101, 182-190.
https://doi.org/10.1016/j.pestbp.2011.09.004

[29]   Belz, R.G., Velini, E.D. and Duke, S.O. (2007) Dose/Response Relationships in Allelopathy Research. In: Fujii, Y. and Hiradate, S., Eds., Allelopathy: New Concepts and Methodology, Science Publishers, Enfield, 3-29.

[30]   Duke, S.O., Cedergreen, N., Velini, E.D. and Belz, R.G. (2006) Hormesis: Is It an Important Factor in Herbicide Use and Allelopathy? Outlooks on Pest Management, 17, 29-33.

[31]   Hiradate, S., Ohse, K., Furubayashi, A. and Fujii, Y. (2010) Quantitative Evaluation of Allelopathic Potentials in Soils: Total Activity Approach. Weed Science, 58, 258-264.
https://doi.org/10.1614/WS-D-09-00085.1

[32]   Lydon, J. and Duke, S.O. (1988) Porphyrin Synthesis Is Required for Photobleaching Activity of the p-Nitrosubstituted Diphenyl Ether Herbicides. Pesticide Biochemistry and Physiology, 31, 74-83.
https://doi.org/10.1016/0048-3575(88)90031-4

[33]   Attard, T.M., McElroy, C.R., Rezende, C.A., Polikarpov, I., Clark, J.H. and Hunt, A.J. (2015) Sugarcane Waste as a Valuable Source of Lipophilic Molecules. Industrial Crops and Products, 76, 95-103.
https://doi.org/10.1016/j.indcrop.2015.05.077

[34]   Gomes, A.C.C., Gomes, A.K.C., Magalhaes, P.D., Buss, D.F., Simas, N.K. and Kuster, R.M. (2016) In Vitro Phytotoxic Activity of Saccharum officinarum Leaves on Lettuce and Weed Calopogon iummucunoides. Allelopathy Journal, 39, 177-190.

[35]   Wu, H., Pratley, J., Lemerle, D. and Haig, T. (2001) Allelopathy in Wheat (Triticum aestivum). Annals of Applied Biology, 139, 1-9.
https://doi.org/10.1111/j.1744-7348.2001.tb00124.x

[36]   Prill, E.A., Barton, L.V. and Solt, M.L. (1949) Effects of Some Organic Acids on the Growth of Wheat Roots in Solutions. Contributions of the Boyce Thompson Institute, 15, 429-425.

[37]   Tang, C.S. and Waiss, A.C. (1978) Short-Chain Fatty Acids as Growth Inhibitors in Decomposing Wheat Straw. Journal of Chemical Ecology, 4, 225-232.
https://doi.org/10.1007/BF00988057

[38]   Aliotta, G., Della Greca, M., Monaco, P., Pinto, G., Pollio, A. and Previtera, L. (1990) In Vitro Algal Growth Inhibition by Phytotoxins of Typha latifolia. Journal of Chemical Ecology, 16, 2637-2646.
https://doi.org/10.1007/BF00988075

[39]   Ko, J., Eom, S.H., Kim, M.J., Yu, C.Y. and Lee, Y.S. (2005) Allelopathy of Rice Husk on Barnyardgrass. Journal of Agronomy, 4, 288-292.
https://doi.org/10.3923/ja.2005.288.292

[40]   Macías, F.A. (1995) Allelopathy in the Search for Natural Herbicide Models. American Chemical Society Symposium Series, 582, 310-329.
https://doi.org/10.1021/bk-1995-0582.ch023

[41]   Kakisawa, H., Asari, F., Kusumi, T., Toma, T., Sakurai, T., Oohusa, T., Hara, Y. and Chihara, M. (1988) An Allelopathic Fatty Acid from the Brown Alga Cladosiphon okamuranus. Phytochemistry, 27, 731-735.
https://doi.org/10.1016/0031-9422(88)84084-6

[42]   Chiang, I., Huang, W. and Wu, J. (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). Journal of Phycology, 40, 474-480.
https://doi.org/10.1111/j.1529-8817.2004.03096.x

[43]   Fukuda, M., Tsujino, Y., Fujimori, T., Wakabayashi, K. and Boger, P. (2004) Phytotoxic Activity of Middle-Chain Fatty Acids I: Effects on Cell Constituents. Pesticide Biochemistry and Physiology, 80, 143-150.
https://doi.org/10.1016/j.pestbp.2004.06.011

[44]   Cantrell, C.L., Duke, S.O., Fronczek, F.R., Osbrink, W.L.A., Mamonov, L.K., Vassilyev, J.I., Wedge, D.E. and., Dayan, F.E. (2007) Phytotoxic Eremophilanes from Ligularia macrophylla. Journal of Agricultural and Food Chemistry, 55, 10656-10663.
https://doi.org/10.1021/jf072548w

[45]   Dayan, F.E. and Duke, S.O. (2009) Biological Activity of Allelochemicals. In: Osbourn, A. and Lanzotti, V., Eds., Plant-Derived Natural Products—Synthesis, Function and Application, Springer, Dordrecht, 361-384.
https://doi.org/10.1007/978-0-387-85498-4_17

[46]   Luz, D.A., Gomes, A.C.C., Simas, N.K., Heringer, O.A., Ramao, W., Lovatti, B.P.O., Scherer, R., Filgueiras, P.R. and Kuster, R.M. (2020) Sugarcane Waste Products as Source of Phytotoxic Compounds for Agriculture. International Journal of Recycling Organic Waste in Agriculture, 9, 385-397.

 
 
Top