Back
 AJMB  Vol.11 No.3 , July 2021
Assessment of Possible Link of Intestinal Microbiota and Type 2 Diabetes Mellitus
Abstract: Introduction: This study assessed the role of gut bacteria in the development of type 2 Diabetes Mellitus. Methodology: Using bacteria cultural method, microbial species were isolated from feacal materials, identified and quantitated through application of genomic spectrophotometric systems with a quantitation of some marker biochemical parameters for Diabetes. Result: We observed a concentration of firmicutes, bacteriodetes, protecbacteria and bifidobacterium with Escherichia coli population predominating. Biochemical parameters reveal a 3-fold raised value for some bromakers in type 2 diabetes. At a confidence interval of 95% paired sample test results gave significant differences for all tested pairs. Conclusion: Result suggests that microbiomes have the potential to alter the gut environment and cause changes that promote the development of type 2 diabetes.
Cite this paper: Simeon, G. , Ibemologi, A. and Cameron, D. (2021) Assessment of Possible Link of Intestinal Microbiota and Type 2 Diabetes Mellitus. American Journal of Molecular Biology, 11, 63-72. doi: 10.4236/ajmb.2021.113006.
References

[1]   Human Microbiome Project Consortium (2012) Structure, Function and Diversity of Healthy Human Microbiome. Nature, 486, 207-214.
https://doi.org/10.1038/nature11234

[2]   Tilg, H. and Kaser, A. (2011) Gut Microbiome, Obesity and Metabolic Dysfunctions. Journals of Clinical Investigation, 12, 2126-2132.
https://doi.org/10.1172/JCI58109

[3]   Langerberg, C. and Lott, L.A. (2018) Genomic in Sight into the Causes of Type 2 Diabetes. The Lancet, 391, 2463-2474.
https://doi.org/10.1016/S0140-6736(18)31132-2

[4]   Clarke, G. Stilling, R.M., Kennedy, P.J., Stanton, C., Cryan, J.F. and Dinan, T.G. (2014) Gut Microbiota: The Neglected Endocrine Organ. Molecular Endocrinology, 28, 1221-1238.
https://doi.org/10.1210/me.2014-1108

[5]   Devaraj, S., Hemarajatu, P. and Versalovic (2013) The Human Gut Microbiome and Body Metabolism Implications for Obesity and Diabetes. Clinical Chemistry, 59, 617-628.
https://doi.org/10.1373/clinchem.2012.187617

[6]   Lambert, S.M., Carson, T., Lowe, J., Ramarji, T., Leff, J.W. and Luo, L. (2015) Composition, Diversity and Abundance of Gut Microbiome in Prediabetes and Type 2 Diabetes. Journal of Diabetes and Obesity, 2, 1-7.
https://doi.org/10.15436/2376-0949.15.031

[7]   Claval, T., Desmarchelier, C. and Haller, D. (2014) Intestinal Microbiota in Metablic Diseases from Bacteria Community Structure and Function to Species of Pathophsiological Relevance. Gut Microbes, 5, 544-551.
https://doi.org/10.4161/gmic.29331

[8]   Kasatpibal, N., Whitney, J.D., Saokaew, S., Kenegkla, K., Heitkemper, M.M. and Apisanthan, A. (2017) Effectiveness of Probiotic, Prebiotic and Symbiotic Therapies in Reducing Post Operative Complications. A Systemic Review and Network Meta-Analysis. Clinical Infectious Diseases, 64, 153.
https://doi.org/10.1093/cid/cix114

[9]   Ye, J. (2013) Mechanisms of Insulin Resistance in Obesity. Frontiers in Medicine, 7, 14-24.
https://doi.org/10.1007/s11684-013-0262-6

[10]   Gareau, M.G., Sherman, P.M. and Walker, W.A. (2010) Probiotics and the Gut Microbiota in Intestinal Health and Disease. Nature, Reviews Gastroenterology and Hepatology, 7, 503-514.
https://doi.org/10.1038/nrgastro.2010.117

[11]   Beaney, A.J., Nunney, I., Gooday, C. and Dhatanya, K. (2016) Factors Determining the Risk of Diabetes Mellitus Foot Amputation. A Restrospective Analyst of a Tertiary Diabetes Foot Care Service. Diabetes Research and Clinical Practice, 114, 69-74.
https://doi.org/10.1016/j.diabres.2016.02.001

[12]   Tabur, S., Eren, M.A. and Celik, Y. (2015) The Major Predictors of Amputation and Length of Stay in Diabetes Patients with Acute Foot Ulceration. Wiener klinische Wochenschrift, 127, 45-50.
https://doi.org/10.1007/s00508-014-0630-5

[13]   Levy, M., Thaiss, C.A. and Zeevi, D. (2015) Microbiota Modulated Metabolites Shapes the Intestinal Microenvironment by Regulating NLRP6 Inflamasome Signaling. Cell, 163, 1428-1443.
https://doi.org/10.1016/j.cell.2015.10.048

[14]   Paharik, A.E. and Horswill, A.R. (2016) The Staphylococcal Biofilm: Adhesins, Regulation, and Host Response. Microbiology Spectrum, 4.
https://doi.org/10.1128/microbiolspec.VMBF-0022-2015

[15]   Round, J.L. and Mazmanian, S.K. (2009) The Gut Nicrobiota Shapes Intestinal Immune Response during Health and Disease. Nature Reviews Immunology, 9, 313-323.
https://doi.org/10.1038/nri2515

[16]   Fadrosh, D.W., Na, B. and Giajer, P. (2014) An Improved Dual-Indexing Approach for Multiplexed 16srRNA Gene Sequencing on Illumina MiSeq Platform Microbiome. Microbiome, 2, 6.
https://doi.org/10.1186/2049-2618-2-6

[17]   Kuzynski, J., Stombaugh, J. and Walters, W.A. (2012) Using QIIME to Analyze 16s rRNA Gene Sequences from Microbial Communities. Current Protocols in Microbiology.
https://doi.org/10.1002/9780471729259.mc01e05s27

[18]   Ayei, F.A., Biagi, E. and Rampelli, S. (2018) Infant and Adult Gut Microbiome and Metabolome in Rural Bassa and Urban Settlers from Nigeria. Cell Reports, 23, 3056-3067.
https://doi.org/10.1016/j.celrep.2018.05.018

[19]   Riviere, A., Selak, M., Lantin, D., Leroy, F. and De Vuyst, L. (2016) Bifidobacteria and Butyrate-Producing Colon Bacteria; Importance and Strategies for Their Stimulation Human Gut. Frontiers in Microbiology, 7, 979.
https://doi.org/10.3389/fmicb.2016.00979

[20]   David, L.A., Maurice, C.F., Carmody, R.N., Goolenberg, D.B., Button, J.E. and Wolfre, B.E. (2014) Diet Rapidly and Reproducibly Alters the Human Gut Microbiome. Nature, 505, 559-563.
https://doi.org/10.1038/nature12820

[21]   Everard, A. and Cani, P.D. (2013) Diabetes, Obesity and Gut Microbiota. Best Practices and Research Clinical Gastroenterology, 27, 73-83.
https://doi.org/10.1016/j.bpg.2013.03.007

[22]   Lee, J. (2013) Adipose Tissue Microphages in the Development of Obesity Induce Inflammation, Insulin Resistance and Type 2 Diabetes. Archives of Pharmaceutical Research, 36, 208-222.
https://doi.org/10.1007/s12272-013-0023-8

[23]   De Angelis, M., Ferrocino, I. and Calabrese, F.M. (2020) Diet Influences the Functions of the Human Intestinal Microbiome. Scientific Reports, 10, Article No. 4247.
https://doi.org/10.1038/s41598-020-61192-y

[24]   Dominguez-Bello, M.G., Godoy-Victorino, F., Knight, R. and Blazer, M.J. (2019) Role of the Microbiome in Human Development. Gut, 68, 1108-1114.
https://doi.org/10.1136/gutjnl-2018-317503

[25]   Zhang, X., Shen, D., Fang, Z., Jie, Z., Qui, X. and Zhang, C. (2013) Human Gut Microbiota Changes Reveal the Progression of Glucose Intolerance. PLoS ONE, 8, e71108.
https://doi.org/10.1371/journal.pone.0071108

[26]   Qui, J., Li, C., Zhu, J. and Zhang, F. (2012) A Metagenome-Wide Association Study of Gut Microbiota in Type 2 Diabetes. Nature, 490, 55-60.
https://doi.org/10.1038/nature11450

[27]   Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zang, D. and Cardone, R.L. (2016) Acetate Mediates a Microbiome-Brain-B-Cell Axis to Promote Metabolic Syndrome. Nature, 534, 213-217.
https://doi.org/10.1038/nature18309

[28]   Brunkwall, L. and Orho-Melander, M. (2017) The Gut Microbiome as a Target for Prevention and Treatment of Hyperglycemia in Type 2 Diabetes from Current Human Evidence to Future Possibilities. Diabetologica, 60, 943-951.
https://doi.org/10.1007/s00125-017-4278-3

[29]   Larsen, N., Vogensen, F.K., Van den Berg, F.W., Nielsen, D.S., Andeasen, A.S. and Pedersen, B.K. (2010) Gut Microbiota in Human Adults with Type 2 Diabetes Differs from Non-Diabetic Adult. PLoS ONE, 5, e9085.
https://doi.org/10.1371/journal.pone.0009085

[30]   Costea, P.I., Hildebrand, F.I., Arumugam, M., Backhed, F., Blaser, M.J. and Bushman, F.D. (2018) Enterotypes in the Landscape of Gut Microbial Community Composition. Nature Microbiology, 3, 8-16.
https://doi.org/10.1038/s41564-017-0072-8

[31]   De Filippo, C., Calvalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J.B. and Massart, S. (2010) Impact of Diet in Shaping Gut Microbiota Revealed by Comparative Study in Children from Europe and Rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107, 14691-14696.
https://doi.org/10.1073/pnas.1005963107

 
 
Top