IIM  Vol.1 No.3 , December 2009
On the Pólya Enumeration Theorem
Abstract: Simple formulas for the number of different cyclic and dihedral necklaces containing nj beads of the j-th color, and , are derived, using the Pólya enumeration theorem.
Cite this paper: nullL. FEL, "On the Pólya Enumeration Theorem," Intelligent Information Management, Vol. 1 No. 3, 2009, pp. 172-173. doi: 10.4236/iim.2009.13025.

[1]   G. Pólya, “Kombinatorische anzahlbestimmungen für Gruppen, Graphen, und chemische Verbindungen,” Acta Math., Vol. 68, pp. 145–254, 1937.

[2]   F. Harary and E. M. Palmer, “Graphical enumeration,” Academic Press, New York, 1973.

[3]   J. J. Rotman, “An introduction to the theory of groups,” Boston, Mass., Allyn and Bacon, Chapter 3, 1984.

[4]   G. Polya and R. C. Read, “Combinatorial enumeration of groups, graphs, and chemical compounds,” Springer, New York, 1987.

[5]   F. Harary, “Graph theory,” Reading, Addison-Wesley, MA, 1994.

[6]   A. Kerber, “Applied finite group actions,” 2nd Ed., Springer, Berlin, Chap. 3, 1999.