Boundary Control for Cooperative Elliptic Systems under Conjugation Conditions
Abstract: The existence and uniqueness of the state for 2 × 2 Dirichlet cooperative elliptic systems under conjugation conditions are proved using Lax-Milgram lemma, then the boundary control for these systems is discussed. The set of equations and inequalities that characterizes this boundary control is found by theory of Lions, Sergienko and Deineka. The problem for cooperative Neumann elliptic systems under conjugation conditions is also considered. Finally, the problem for n × n cooperative elliptic systems under conjugation conditions is established.

1. Introduction

In today’s rapidly progressing science and technology, the field of control theory is at the forefront of the creative interplay of mathematics, engineering, and computer science.

Control theory has two objectives:

To understand the fundamental principle of control, and to characterize them mathematically.

The control problem is to choose the control space U to minimize an energy functional J(u), subject to constraints on the control such as Uad (set of admissible control) is a closed convex subset of U.

Various optimal control problems, of systems governed by finite order elliptic, parabolic and hyperbolic operators with finite number of variables have been introduced by Lions . These problems have been extended to non-cooperative systems in   and cooperative systems in    . The control problems for infinite order hyperbolic operators have been studied in  .

Some existence results have been established for nonlinear systems in     .

Some applications for control problems were introduced for example in  .

New optimal control problems of distributed systems described by an elliptic, parabolic and hyperbolic operators with conjugation conditions and by a quadratic cost functional have been studied by Sergienko and Deineka   .

In the present work, using the theory of Lions , Sergienko and Deineka   , the boundary control for some cooperative elliptic systems of the form

$-\Delta {h}_{i}=\underset{j=1}{\overset{n}{\sum }}\text{ }\text{ }{a}_{ij}{h}_{j}+{f}_{i}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{in}\text{\hspace{0.17em}}\Omega ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}i,j=1,2,3,\cdots ,n,$ (1)

under conjugation conditions is discussed, where

${a}_{ij}>0\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\forall i\ne j.$ (2)

System (1), where (2) is satisfied is called cooperative system. Such systems appear in some biological and physical problems .

Our paper is organized as follows: In Section 2, we first prove the existence and uniqueness of the state for 2 × 2 Dirichlet cooperative system under conjugation conditions, then we study the optimal boundary control of this system. Section 3 is devoted to discuss the boundary control for 2 × 2 Neumann cooperative elliptic system under conjugation conditions. In Section 4, we generalize the discussion which has been introduced in Section 2, to n × n Dirichlet cooperative system with conjugation conditions. Finally in Section 5, we generalize the problem which has been established in Section 3 to n × n Neumann cooperative elliptic system under conjugation conditions.

2. Boundary Control for 2 × 2 Dirichlet Elliptic Systems

In this section, we study the boundary control for the following 2 × 2 cooperative Dirichlet elliptic system

$\left\{\begin{array}{l}-\Delta {h}_{1}=a{h}_{1}+b{h}_{2}+{f}_{1}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{in}\text{\hspace{0.17em}}\Omega ,\\ -\Delta {h}_{2}=c{h}_{1}+d{h}_{2}+{f}_{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{in}\text{\hspace{0.17em}}\Omega ,\\ {h}_{1}={h}_{2}=0\text{ }\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{on}\text{\hspace{0.17em}}\Gamma ,\end{array}$ (3)

under conjugation conditions:

$\left\{\begin{array}{l}{R}_{1}{\left\{\frac{\partial {h}_{1}}{\partial {v}_{A}}\right\}}^{-}+{R}_{2}{\left\{\frac{\partial {h}_{1}}{\partial {v}_{A}}\right\}}^{+}=\left[{h}_{1}\right]+\delta \text{ }\text{ }\text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\\ {R}_{1}{\left\{\frac{\partial {h}_{2}}{\partial {v}_{A}}\right\}}^{-}+{R}_{2}{\left\{\frac{\partial {h}_{2}}{\partial {v}_{A}}\right\}}^{+}=\left[{h}_{2}\right]+\delta \text{ }\text{ }\text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\end{array}$ (4)

$\left\{\begin{array}{l}\left[\frac{\partial {h}_{1}}{\partial {v}_{A}}\right]=\left[\underset{i,j=1}{\overset{n}{\sum }}\frac{\partial {h}_{1}}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]={w}_{1}\text{ }\text{ }\text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\\ \left[\frac{\partial {h}_{2}}{\partial {v}_{A}}\right]=\left[\underset{i,j=1}{\overset{n}{\sum }}\frac{\partial {h}_{2}}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]={w}_{2}\text{ }\text{ }\text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\end{array}$ (5)

where

a, b, c and d are given numbers such that b, c > 0,

and

${R}_{1},{R}_{2},w,\delta \in C\left(\gamma \right),\text{\hspace{0.17em}}{R}_{1},{R}_{2}\ge 0,\text{\hspace{0.17em}}{R}_{1}+{R}_{2}\ge {R}_{0}>0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}{R}_{0}=\text{constant}.$ (6)

We first prove the existence of the state of systems (3) under the following conditions:

$\left\{\begin{array}{l}a<\mu ,\text{\hspace{0.17em}}\text{ }d<\mu ,\\ \left(\mu -a\right)\left(\mu -d\right)>bc,\end{array}$ (7)

where $\mu$ is a positive constant determined by Friedrich inequality:

$\mu {\int }_{\Omega }{|h|}^{2}\text{d}x\le {\int }_{\Omega }{|\nabla h|}^{2}\text{d}x.$ (8)

Then, we prove the existence of boundary control for this system and we find the set of equations and inequalities that characterizes this boundary control.

Existence and uniqueness of the state

By Cartesian product, we have the following chain of Sobolev spaces:

${\left({H}_{0}^{1}\left(\Omega \right)\right)}^{2}\subseteq {\left({L}^{2}\left(\Omega \right)\right)}^{2}\subseteq {\left({H}^{-1}\left(\Omega \right)\right)}^{2}.$

On ${\left({H}_{0}^{1}\left(\Omega \right)\right)}^{2}$, we define the bilinear form:

$\begin{array}{c}a\left(h,\psi \right)={\int }_{\Omega }\text{ }\text{ }\nabla {h}_{1}\nabla {\psi }_{1}\text{d}x+{\int }_{\Omega }\text{ }\text{ }\nabla {h}_{2}\nabla {\psi }_{2}\text{d}x\\ \text{\hspace{0.17em}}-{\int }_{\Omega }\left(a{h}_{1}{\psi }_{1}+b{h}_{2}{\psi }_{1}+c{h}_{1}{\psi }_{2}+d{h}_{2}{\psi }_{2}\right)\text{d}x\\ \text{\hspace{0.17em}}+{\int }_{\gamma }\frac{\left[{h}_{1}\right]\left[{\psi }_{1}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma +{\int }_{\gamma }\frac{\left[{h}_{2}\right]\left[{\psi }_{2}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma .\end{array}$ (9)

Then, we have

Lemma 2.1 The bilinear form (9) is coercive on ${\left({H}_{0}^{1}\left(\Omega \right)\right)}^{2}$ ; that is, there exists a positive constant C such that

$a\left(h,h\right)\ge C{‖h‖}_{{\left[{H}_{0}^{1}\left(\Omega \right)\right]}^{2}}^{2}\text{ }\forall h=\left\{{h}_{1},{h}_{2}\right\}\in {\left({H}_{0}^{1}\left(\Omega \right)\right)}^{2}.$ (10)

Proof.

As in , we choose m is large enough such that $a+m>0$ and $d+m>0$.

Then,

$\begin{array}{c}a\left(h,h\right)=\frac{1}{b}{\int }_{\Omega }\left({|\nabla {h}_{1}|}^{2}+m{|{h}_{1}|}^{2}\right)\text{d}x+\frac{1}{c}{\int }_{\Omega }\left({|\nabla {h}_{2}|}^{2}+m{|{h}_{2}|}^{2}\right)\text{d}x\\ \text{\hspace{0.17em}}-\frac{a+m}{b}{\int }_{\Omega }{|{h}_{1}|}^{2}\text{d}x-\frac{d+m}{c}{\int }_{\Omega }{|{h}_{2}|}^{2}\text{d}x-2{\int }_{\Omega }\text{ }\text{ }{h}_{1}{h}_{2}\text{d}x\\ \text{\hspace{0.17em}}+{\int }_{\gamma }\frac{\left[{h}_{1}\right]\left[{\psi }_{1}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma +{\int }_{\gamma }\frac{\left[{h}_{2}\right]\left[{\psi }_{2}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma .\end{array}$

From (6), we get

$\begin{array}{c}a\left(h,h\right)\ge \frac{1}{b}{\int }_{\Omega }\left({|\nabla {h}_{1}|}^{2}+m{|{h}_{1}|}^{2}\right)\text{d}x+\frac{1}{c}{\int }_{\Omega }\left({|\nabla {h}_{2}|}^{2}+m{|{h}_{2}|}^{2}\right)\text{d}x\\ \text{\hspace{0.17em}}-\frac{a+m}{b}{\int }_{\Omega }{|{h}_{1}|}^{2}\text{d}x-\frac{d+m}{c}{\int }_{\Omega }{|{h}_{2}|}^{2}\text{d}x-2{\int }_{\Omega }\text{ }\text{ }{h}_{1}{h}_{2}\text{d}x.\end{array}$

By Cauchy Schwartz inequality

$\begin{array}{c}a\left(h,h\right)\ge \frac{1}{b}{\int }_{\Omega }\left({|\nabla {h}_{1}|}^{2}+m{|{h}_{1}|}^{2}\right)\text{d}x+\frac{1}{c}{\int }_{\Omega }\left({|\nabla {h}_{2}|}^{2}+m{|{h}_{2}|}^{2}\right)\text{d}x\\ \text{\hspace{0.17em}}-\frac{a+m}{b}{\int }_{\Omega }{|{h}_{1}|}^{2}\text{d}x-\frac{d+m}{c}{\int }_{\Omega }{|{h}_{2}|}^{2}\text{d}x\\ \text{\hspace{0.17em}}-2{\left({\int }_{\Omega }{|{h}_{1}|}^{2}\text{d}x\right)}^{\frac{1}{2}}{\left({\int }_{\Omega }{|{h}_{2}|}^{2}\text{d}x\right)}^{\frac{1}{2}}.\end{array}$

From (8), we deduce

$\begin{array}{l}a\left(h,h\right)\ge \frac{1}{b}\left(1-\frac{a+m}{\mu +m}\right){‖{h}_{1}‖}^{2}+\frac{1}{c}\left(1-\frac{d+m}{\mu +m}\right){‖{h}_{2}‖}^{2}-\frac{2}{\mu +m}‖{h}_{1}‖‖{h}_{2}‖.\hfill \end{array}$

Therefore (7) implies

$a\left(h,h\right)\ge C\left({‖{h}_{1}‖}^{2}+{‖{h}_{2}‖}^{2}\right)=C{‖h‖}_{{\left[{H}_{0}^{1}\left(\Omega \right)\right]}^{2}}^{2}\text{ }\text{\hspace{0.17em}}\forall h\in {\left({H}_{0}^{1}\left(\Omega \right)\right)}^{2},$

which proves the coerciveness condition of the bilinear form (2.7). Then using Lax-Milgram lemma, we can prove the following theorem:

Theorem 2.1 For a given $f=\left({f}_{1},{f}_{2}\right)\in {\left({L}^{2}\left(\Omega \right)\right)}^{2}$ there exists a unique solution $h=\left({h}_{1},{h}_{2}\right)\in {\left({H}_{0}^{1}\left(\Omega \right)\right)}^{2}$ for systems (3) with conjugation conditions (4) and (5) if conditions (7) are satisfied.

Formulation of the control problem

The space $U={\left({L}^{2}\left(\Gamma \right)\right)}^{2}$ is the space of controls. For a control $u=\left\{{u}_{1},{u}_{2}\right\}\in {\left({L}^{2}\left(\Gamma \right)\right)}^{2}$, the state $h\left(u\right)=\left\{{h}_{1}\left(u\right),{h}_{2}\left(u\right)\right\}$ of the system is given by the solution of

$\left\{\begin{array}{l}-\Delta {h}_{1}\left(u\right)=a{h}_{1}\left(u\right)+b{h}_{2}\left(u\right)+{f}_{1}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{ }\text{\hspace{0.17em}}\text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\\ -\Delta {h}_{2}\left(u\right)=c{h}_{1}\left(u\right)+d{h}_{2}\left(u\right)+{f}_{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\\ {h}_{1}\left(u\right)={u}_{1},{h}_{2}\left(u\right)={u}_{2}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\end{array}$ (11)

under conjugation conditions

$\left\{\begin{array}{l}{R}_{1}{\left\{\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}\right\}}^{-}+{R}_{2}{\left\{\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}\right\}}^{+}=\left[{h}_{1}\left(u\right)\right]+\delta \text{ }\text{ }\text{ }\text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\\ {R}_{1}{\left\{\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}\right\}}^{-}+{R}_{2}{\left\{\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}\right\}}^{+}=\left[{h}_{2}\left(u\right)\right]+\delta \text{ }\text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\end{array}$ (12)

$\left\{\begin{array}{l}\left[\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}\right]=\left[\underset{i,j=1}{\overset{n}{\sum }}\frac{\partial {h}_{1}\left(u\right)}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]={w}_{1}\text{ }\text{ }\text{ }\text{\hspace{0.17em}}\text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\\ \left[\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}\right]=\left[\underset{i,j=1}{\overset{n}{\sum }}\frac{\partial {h}_{2}\left(u\right)}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]={w}_{2}\text{ }\text{\hspace{0.17em}}\text{on}\text{ }\text{\hspace{0.17em}}\gamma .\end{array}$ (13)

The observation equation is given by:

$z\left(u\right)=\left\{{z}_{1}\left(u\right),{z}_{2}\left(u\right)\right\}=Ch\left(u\right)=C\left\{{h}_{1}\left(u\right),{h}_{2}\left(u\right)\right\}=\left\{{h}_{1}\left(u\right),{h}_{2}\left(u\right)\right\}$

For a given ${z}_{d}=\left\{{z}_{1d},{z}_{2d}\right\}\in {\left({L}^{2}\left(\Gamma \right)\right)}^{2}$, the cost functional is given by

$J\left(v\right)={‖\frac{\partial {h}_{1}\left(v\right)}{\partial {v}_{A}}-{z}_{1d}‖}_{{L}^{2}\left(\Gamma \right)}^{2}+{‖\frac{\partial {h}_{2}\left(v\right)}{\partial {v}_{A}}-{z}_{2d}‖}_{{L}^{2}\left(\Gamma \right)}^{2}+{\left(Nv,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}},$ (14)

where N is a hermitian positive definite operator such that:

${\left(Nv,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}\ge Q{‖v‖}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}^{2},\text{ }Q>0.$ (15)

The control problem then is to:

$\left\{\begin{array}{l}\text{Find}\text{\hspace{0.17em}}u=\left\{{u}_{1},{u}_{2}\right\}\in {U}_{ad}\text{\hspace{0.17em}}\left(\text{closedconvexsubsetof}\text{\hspace{0.17em}}{\left({L}^{2}\left(\Gamma \right)\right)}^{2}\right)\text{suchthat}:\\ J\left(u\right)=inf\text{ }J\left(v\right)\text{ }\forall v\in {U}_{ad}.\end{array}$ (16)

The cost functional (14) can be written as

$\begin{array}{c}J\left(v\right)={‖\frac{\partial {h}_{1}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}+\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}-{z}_{1d}‖}_{{L}^{2}\left(\Gamma \right)}^{2}\\ \text{\hspace{0.17em}}+{‖\frac{\partial {h}_{2}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}+\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}-{z}_{2d}‖}_{{L}^{2}\left(\Gamma \right)}^{2}\\ \text{\hspace{0.17em}}+{\left(Nv,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}.\end{array}$

If we let:

$\begin{array}{c}\pi \left(u,v\right)={\left(\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{1}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ \text{\hspace{0.17em}}+{\left(\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{2}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ \text{\hspace{0.17em}}+{\left(Nu,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}.\end{array}$

and

$\begin{array}{c}f\left(v\right)={\left({z}_{1d}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{1}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}+{\left({z}_{2d}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{2}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}.\end{array}$

Then

$J\left(v\right)=\pi \left(v,v\right)-2f\left(v\right)+{‖{z}_{1d}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}‖}_{{L}^{2}\left(\Gamma \right)}^{2}+{‖{z}_{2d}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}‖}_{{L}^{2}\left(\Gamma \right)}^{2}.$

From (15), $\pi \left(v,v\right)\ge M{‖v‖}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}^{2}$. Using the theory of Lions , there exists a unique optimal control of problem (16), moreover it is characterized by

Theorem 2.2 Let us suppose that (10) holds and the cost functional is given by (14), then the boundary control u is characterized by

$\left\{\begin{array}{ll}-\Delta {p}_{1}\left(u\right)-a{p}_{1}\left(u\right)-c{p}_{2}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ -\Delta {p}_{2}\left(u\right)-b{p}_{1}\left(u\right)-d{p}_{2}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ {p}_{1}\left(u\right)=-\left(\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}-{z}_{1d}\right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}{p}_{2}\left(u\right)=-\left(\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}-{z}_{2d}\right)\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \\ \left[\underset{i,j}{\overset{n}{\sum }}\frac{\partial {p}_{1}\left(u\right)}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]=\left[\underset{i,j}{\overset{n}{\sum }}\frac{\partial {p}_{2}\left(u\right)}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]=0\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \\ {\left\{\frac{\partial {p}_{1}\left(u\right)}{\partial {v}_{A}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{1}\left(u\right)\right],\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left\{\frac{\partial {p}_{2}\left(u\right)}{\partial {v}_{A}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{2}\left(u\right)\right]\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \\ \begin{array}{l}{\left({p}_{1}\left(u\right),\frac{\partial {h}_{1}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ +{\left({p}_{2}\left(u\right),\frac{\partial {h}_{2}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}+{\left(Nu,v-u\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}\ge 0,\end{array}\hfill & \hfill \end{array}$

together with(11), (12) and (13), where $p\left(u\right)=\left\{{p}_{1}\left(u\right),{p}_{2}\left(u\right)\right\}$ is the adjoint state.

Proof.

The optimal control u is characterized by 

$\pi \left(u,v-u\right)-L\left(v-u\right)\ge 0\text{ }\text{\hspace{0.17em}}\text{\hspace{0.17em}}\forall u\in {U}_{ad}.$

Then

$\begin{array}{l}{\left(\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{1}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ +{\left(\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{2}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}+{\left(Nu,v-u\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}\\ -{\left({z}_{1d}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{1}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ -{\left({z}_{2d}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{2}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\ge 0.\end{array}$

So

$\begin{array}{l}{\left(\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}-{z}_{1d},\frac{\partial {h}_{1}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ +{\left(\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}-{z}_{2d},\frac{\partial {h}_{2}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}+{\left(Nu,v-u\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}\ge 0.\end{array}$ (17)

Since the model A of the system is given by

$Ah\left(x\right)=A\left({h}_{1},{h}_{2}\right)=\left(-\Delta {h}_{1}-a{h}_{1}-b{h}_{2},-\Delta {h}_{2}-c{h}_{1}-d{h}_{2}\right),$

and since

$\left({A}^{\ast }p,h\right)=\left(p,Ah\right),$

then

$\begin{array}{l}\left(p\left(u\right),Ah\left(u\right)\right)\\ =\left({p}_{1}\left(u\right),-\Delta {h}_{1}\left(u\right)-a{h}_{1}\left(u\right)-b{h}_{2}\left(u\right)\right)+\left({p}_{2}\left(u\right),-\Delta {h}_{2}\left(u\right)-c{h}_{1}\left(u\right)-d{h}_{2}\left(u\right)\right)\\ =\left(-\Delta {p}_{1}\left(u\right)-a{p}_{1}\left(u\right)-c{p}_{2}\left(u\right),{h}_{1}\left(u\right)\right)+\left(-\Delta {p}_{2}\left(u\right)-b{p}_{1}\left(u\right)-d{p}_{2}\left(u\right),{h}_{2}\left( u \right)\right)\end{array}$

and since the adjoint state is defined by:

$\left\{\begin{array}{ll}-\Delta {p}_{1}\left(u\right)-a{p}_{1}\left(u\right)-c{p}_{2}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ -\Delta {p}_{2}\left(u\right)-b{p}_{1}\left(u\right)-d{p}_{2}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ {p}_{1}\left(u\right)=-\left(\frac{\partial {h}_{1}\left(u\right)}{\partial {v}_{A}}-{z}_{1d}\right)\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \\ {p}_{2}\left(u\right)=-\left(\frac{\partial {h}_{2}\left(u\right)}{\partial {v}_{A}}-{z}_{2d}\right)\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \\ \left[\frac{\partial {p}_{1}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right]=\left[\frac{\partial {p}_{2}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right]=0\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \\ {\left\{\frac{\partial {p}_{1}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{1}\left(u\right)\right],\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left\{\frac{\partial {p}_{2}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{2}\left(u\right)\right]\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \end{array}$

hence (17) implies

$\begin{array}{l}{\left({p}_{1}\left(u\right),\frac{\partial {h}_{1}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{1}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ +{\left({p}_{2}\left(u\right),\frac{\partial {h}_{2}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{2}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}+{\left(Nu,v-u\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{2}}\ge 0.\end{array}$

3. Boundary Control for 2 × 2 Neumann Elliptic Systems

In this section, we study the boundary control for 2 × 2 cooperative Neumann elliptic system in the form

$\left\{\begin{array}{ll}-\Delta {h}_{1}=a{h}_{1}+b{h}_{1}+{f}_{1}\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega \subset {R}^{n},\hfill \\ -\Delta {h}_{2}=c{h}_{1}+d{h}_{2}+{f}_{2}\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega \subset {R}^{n},\hfill \\ \frac{\partial {h}_{1}}{\partial {v}_{A}}={g}_{1},\text{\hspace{0.17em}}\frac{\partial {h}_{2}}{\partial {v}_{A}}={g}_{2}\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \end{array}$ (18)

with conjugation conditions (4) and (5), where ${g}_{i}\in {\left({L}^{2}\left(\Gamma \right)\right)}^{2}$, $i=1,2$. For this, we introduce again the bilinear form (9) which is coercive on ${\left({H}^{1}\left(\Omega \right)\right)}^{2}$, since

$\begin{array}{l}{\left({H}_{0}^{1}\left(\Omega \right)\right)}^{2}\subseteq {\left({H}^{1}\left(\Omega \right)\right)}^{2}.\hfill \end{array}$

Then, by Lax-Milgram lemma, there exists a unique solution $h=\left({h}_{1},{h}_{2}\right)$ for system (18) such that:

$a\left(h,\psi \right)=L\left(\psi \right)\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\forall \psi \in {\left({H}^{1}\left(\Omega \right)\right)}^{2},$ (19)

where

$\begin{array}{c}{L}_{g}\left(\psi \right)={\int }_{\Omega }\text{ }\text{ }{f}_{1}\left(x\right){\psi }_{1}\left(x\right)\text{d}x+{\int }_{\Omega }\text{ }\text{ }{f}_{2}\left(x\right){\psi }_{2}\left(x\right)\text{d}x\\ \text{\hspace{0.17em}}+{\int }_{\Gamma }\text{ }\text{ }{g}_{1}\left(x\right){\psi }_{1}\left(x\right)\text{d}\Gamma +{\int }_{\Gamma }\text{ }\text{ }{g}_{2}\left(x\right){\psi }_{2}\left(x\right)\text{d}\Gamma +{\int }_{\gamma }\frac{\left({R}_{2}{w}_{1}-\delta \right)\left[{\psi }_{1}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma \\ \text{\hspace{0.17em}}+{\int }_{\gamma }\frac{\left({R}_{2}{w}_{2}-\delta \right)\left[{\psi }_{2}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma -{\int }_{\gamma }\text{ }\text{ }{w}_{1}{\psi }_{1}^{+}\text{d}\gamma -{\int }_{\gamma }\text{ }\text{ }{w}_{2}{\psi }_{2}^{+}\text{d}\gamma ,\end{array}$

is a continuous linear form defined on ${\left({H}^{1}\left(\Omega \right)\right)}^{2}$. Then, applying Green’s formula, we get

$\begin{array}{l}{\int }_{\Omega }\left(-\Delta {h}_{1}-a{h}_{1}-b{h}_{2}\right){\psi }_{1}\left(x\right)\text{d}x+{\int }_{\Omega }\left(-\Delta {h}_{2}-c{h}_{1}-d{h}_{2}\right){\psi }_{2}\left(x\right)\text{d}x\\ =-{\int }_{\Gamma }\frac{\partial {h}_{1}}{\partial {\nu }_{A}}{\psi }_{1}\left(x\right)\text{d}\Gamma -{\int }_{\Gamma }\frac{\partial {h}_{2}}{\partial {\nu }_{A}}{\psi }_{2}\left(x\right)\text{d}\Gamma -{\int }_{\gamma }\frac{\partial {h}_{1}}{\partial {\nu }_{A}}{\psi }_{1}\left(x\right)\text{d}\gamma \\ \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{ }\text{ }-{\int }_{\gamma }\frac{\partial {h}_{2}}{\partial {\nu }_{A}}{\psi }_{2}\left(x\right)\text{d}\gamma +a\left(h,\psi \right)={\int }_{\Omega }\text{ }\text{ }{f}_{1}{\psi }_{1}\text{d}x+{\int }_{\Omega }\text{ }\text{ }{f}_{2}{\psi }_{2}\text{d}x,\end{array}$

using (19), the state $h\left(u\right)=\left({h}_{1}\left(u\right),{h}_{2}\left(u\right)\right)$ of the system is given by the solution of

$\left\{\begin{array}{ll}-\Delta {h}_{1}\left(u\right)=a{h}_{1}\left(u\right)+b{h}_{2}\left(u\right)+{f}_{1}\hfill & \text{in}\text{\hspace{0.17em}}\text{ }\Omega ={\Omega }_{1}\cup {\Omega }_{2},\hfill \\ -\Delta {h}_{2}\left(u\right)=c{h}_{1}\left(u\right)+d{h}_{2}\left(u\right)+{f}_{2}\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ={\Omega }_{1}\cup {\Omega }_{2},\hfill \\ \frac{\partial {h}_{1}\left(u\right)}{\partial {\nu }_{A}}={g}_{1}+{u}_{1}\hfill & \text{on}\text{\hspace{0.17em}}\text{ }\Gamma ,\hfill \\ \frac{\partial {h}_{2}\left(u\right)}{\partial {\nu }_{A}}={g}_{2}+{u}_{2}\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \end{array}$ (20)

under conjugation conditions (12), (13). For a given ${z}_{d}=\left({z}_{1d},{z}_{2d}\right)\in {\left({L}^{2}\left(\Gamma \right)\right)}^{2}$, the cost functional is again given by (14), then there exists a unique optimal control $u\in {U}_{ad}$ for (16) and we deduce:

Theorem 3.1 If the cost functional is given by (14), there exists a unique boundary control

$u=\left({u}_{1},{u}_{2}\right)\in {\left({L}^{2}\left(\Gamma \right)\right)}^{2}$, such that:

$J\left(u\right)\le J\left(v\right)\text{ }\forall v\in {U}_{ad}\subset {\left({L}^{2}\left(\Gamma \right)\right)}^{2},$

moreover it is characterized by the following equations and inequalities

$\left\{\begin{array}{ll}-\Delta {p}_{1}\left(u\right)-a{p}_{1}\left(u\right)-c{p}_{2}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ -\Delta {p}_{2}\left(u\right)-b{p}_{1}\left(u\right)-d{p}_{2}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ \frac{\partial {p}_{1}\left(u\right)}{\partial {v}_{{A}^{\ast }}}={h}_{1}\left(u\right)-{z}_{1d}\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \\ \frac{\partial {p}_{2}\left(u\right)}{\partial {v}_{{A}^{\ast }}}={h}_{2}\left(u\right)-{z}_{2d}\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \\ \left[\frac{\partial {p}_{1}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right]=\left[\frac{\partial {p}_{2}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right]=0\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \\ {\left\{\frac{\partial {p}_{1}}{\partial {v}_{{A}^{\ast }}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{1}\left(u\right)\right],\text{\hspace{0.17em}}\text{\hspace{0.17em}}{\left\{\frac{\partial {p}_{2}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{2}\left(u\right)\right]\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \end{array}$

$\begin{array}{l}{\int }_{\Gamma }\left({p}_{1}\left(u\right)+N{u}_{1}\right)\left({v}_{1}-{u}_{1}\right)\text{d}\Gamma +{\int }_{\Gamma }\left({p}_{2}\left(u\right)+N{u}_{2}\right)\left({v}_{2}-{u}_{2}\right)\text{d}\Gamma \ge 0.\hfill \end{array}$

Together with (20), (12) and (13).

4. Boundary Control for n × n Cooperative Dirichlet Systems

In this section, we generalize the discussion which has been introduced in section 2 to n × n cooperative Dirichlet system of the form

$\left\{\begin{array}{ll}-\Delta {h}_{i}+{\sum }_{j=1}^{n}{a}_{ij}{h}_{j}={f}_{i}\hfill & \text{in}\text{\hspace{0.17em}}\Omega ,\hfill \\ {h}_{i}=0\hfill & \text{on}\text{\hspace{0.17em}}\Gamma ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}i=1,2,\cdots ,n,\hfill \end{array}$ (21)

under conjugation conditions

${R}_{1}{\left\{\frac{\partial {h}_{i}}{\partial {v}_{A}}\right\}}^{-}+{R}_{2}{\left\{\frac{\partial {h}_{i}}{\partial {v}_{A}}\right\}}^{+}=\left[{h}_{i}\right]+\delta \text{\hspace{0.17em}}\text{ }\text{on}\text{\hspace{0.17em}}\gamma ,$ (22)

and

$\left[\frac{\partial {h}_{i}}{\partial {v}_{A}}\right]=\left[\underset{i,j=1}{\overset{n}{\sum }}\frac{\partial {h}_{i}}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]={w}_{i}\text{\hspace{0.17em}}\text{ }\text{\hspace{0.17em}}\text{on}\text{\hspace{0.17em}}\gamma ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}i=1,2,\cdots ,n.$ (23)

To prove the existence of the state of system (21), we assume that:

$\left\{\begin{array}{l}\text{thematrex}\text{\hspace{0.17em}}\left(\mu -MI\right)\text{\hspace{0.17em}}\text{is}\text{\hspace{0.17em}}\text{a}\text{\hspace{0.17em}}\text{non-singular}\text{\hspace{0.17em}}M\text{-matrix}\text{\hspace{0.17em}}\text{which}\text{\hspace{0.17em}}\text{means}\\ \text{thatalltheprincipal}\text{\hspace{0.17em}}\text{minors}\text{\hspace{0.17em}}\text{extracted}\text{\hspace{0.17em}}\text{from}\text{\hspace{0.17em}}\text{it}\text{\hspace{0.17em}}\text{are}\text{\hspace{0.17em}}\text{positive},\end{array}$ (24)

where, I is identity matrix and $\mu$ is a positive constant determined by Friedrich inequality(8).

By Cartesian product, we have the following chain of Sobolev spaces:

${\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}\subseteq {\left({L}^{2}\left(\Omega \right)\right)}^{n}\subseteq {\left({H}^{-1}\left(\Omega \right)\right)}^{n}.$

On ${\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}$, the bilinear form is defined by:

$a\left(h,\psi \right)=\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }\nabla {h}_{i}\nabla {\psi }_{i}\text{d}x+\underset{i,j=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }{a}_{ij}{h}_{i}{\psi }_{i}\text{d}x+\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\frac{\left[{h}_{i}\right]\left[{\psi }_{i}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma .$ (25)

As in lemma 2.1, (24), implies

$a\left(h,h\right)\ge C\underset{i=1}{\overset{n}{\sum }}{‖{h}_{i}‖}^{2}=C{‖h‖}_{{\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}}^{2},\text{\hspace{0.17em}}\forall h\in {\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}.$ (26)

Now, let

$L\left(\psi \right)=\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }{f}_{i}\left(x\right){\psi }_{i}\left(x\right)\text{d}x+\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\frac{\left({R}_{2}w-\delta \right)\left[{\psi }_{i}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma -\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\text{ }\text{ }{w}_{i}{\psi }_{i}^{+}\text{d}\gamma ,$ (27)

be a continuous linear form on ${\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}$, then using Lax-Milgram lemma, there exists a unique solution $h\in {\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}$ such that:

$a\left(h,\psi \right)=L\left(\psi \right)\text{ }\text{\hspace{0.17em}}\text{\hspace{0.17em}}\forall \psi ={\left({\psi }_{i}\right)}_{i=1}^{n}\in {\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}.$

Then, we have

Theorem 4.1 For $f={\left\{{f}_{i}\right\}}_{i=1}^{n}\in {\left({L}^{2}\left(\Omega \right)\right)}^{n}$ there exists a unique solution $h\in {\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}$ for cooperative Dirichlet system (21) with conjugation conditions (22) and (23) if condition (24) is satisfied.

So, we can formulate the corresponding control problem:

The space $U={\left({L}^{2}\left(\Gamma \right)\right)}^{n}$ is the space of controls. For a control $u=\left\{{u}_{1},{u}_{2},\cdots ,{u}_{n}\right\}\in {\left({L}^{2}\left(\Gamma \right)\right)}^{n}$, the state $h\left(u\right)=\left\{{h}_{1}\left(u\right),{h}_{2}\left(u\right),\cdots ,{h}_{n}\left(u\right)\right\}$ of the system is given by the solution of

$\left\{\begin{array}{ll}-\Delta {h}_{i}\left(u\right)+{\sum }_{j=1}^{n}{a}_{ij}{h}_{j}\left(u\right)={f}_{i}\left(u\right)\hfill & \text{in}\text{\hspace{0.17em}}\text{ }\Omega ,\hfill \\ {h}_{i}\left(u\right)={u}_{i}\hfill & \text{on}\text{\hspace{0.17em}}\text{ }\Gamma ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}i=1,2,\cdots ,n,\hfill \end{array}$ (28)

under conjugation conditions:

$\left\{\begin{array}{ll}{R}_{1}{\left\{\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}\right\}}^{-}+{R}_{2}{\left\{\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}\right\}}^{+}=\left[{h}_{i}\left(u\right)\right]+\delta \hfill & \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{on}\text{\hspace{0.17em}}\gamma ,\hfill \\ \left[\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}\right]=\left[\underset{i,j=1}{\overset{n}{\sum }}\frac{\partial {h}_{i}\left(u\right)}{\partial {x}_{j}}\mathrm{cos}\left(v,{x}_{i}\right)\right]={w}_{i}\hfill & \text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{on}\text{\hspace{0.17em}}\gamma ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}i=1,2,\cdots ,n.\hfill \end{array}$ (29)

The observation may be takes as

$\begin{array}{c}z\left(u\right)=\left\{{z}_{1}\left(u\right),{z}_{2}\left(u\right),\cdots ,{z}_{n}\left(u\right)\right\}=Ch\left(u\right)=C\left\{{h}_{1}\left(u\right),{h}_{2}\left(u\right),\cdots ,{h}_{n}\left(u\right)\right\}\\ =\left\{{h}_{1}\left(u\right),{h}_{2}\left(u\right),\cdots ,{h}_{n}\left(u\right)\right\},\end{array}$

the cost functional is given by

$J\left(v\right)=\underset{i=1}{\overset{n}{\sum }}{‖\frac{\partial {h}_{i}\left(v\right)}{\partial {v}_{A}}-{z}_{id}‖}_{{L}^{2}\left(\Gamma \right)}^{2}+{\left(Nv,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}},$ (30)

where N is a hermitian positive definite operator such that:

${\left(Nv,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}}\ge M{‖v‖}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}}^{2},\text{ }M>0,\text{ }\forall \text{ }\text{ }v\in U.$ (31)

The control problem then is to find:

$\left\{\begin{array}{l}u=\left\{{u}_{1},{u}_{2},\cdots ,{u}_{n}\right\}\in {U}_{ad}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{such}\text{\hspace{0.17em}}\text{that}:\\ J\left(u\right)=inf\text{ }J\left(v\right)\text{ }\text{ }\forall v\in {U}_{ad},\end{array}$ (32)

where ${U}_{ad}$ is closed convex subset of ${\left({L}^{2}\left(\Gamma \right)\right)}^{n}$. The cost functional (30) can be written as

$J\left(v\right)=\underset{i=1}{\overset{n}{\sum }}{‖\frac{\partial {h}_{i}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}+\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}-{z}_{id}‖}_{{L}^{2}\left(\Gamma \right)}^{2}+{\left(Nv,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}},$

if we let

$\pi \left(u,v\right)=\underset{i=1}{\overset{n}{\sum }}{\left(\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{i}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}+{\left(Nv,v\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}},$

and

$L\left(v\right)=\underset{i=1}{\overset{n}{\sum }}{\left({z}_{id}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{i}\left(v\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)},$

then

$J\left(v\right)=\pi \left(v,v\right)-2L\left(v\right)+\underset{i=1}{\overset{n}{\sum }}{‖{z}_{id}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}‖}_{{L}^{2}\left(\Gamma \right)}^{2}.$

From (31),

$\pi \left(v,v\right)\ge N{‖v‖}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}}^{2},$

using the theory of Lions , there exists a unique optimal control of problem(32); moreover it is characterized by

Theorem 4.2 Let us suppose that (26) holds and the cost functional is given by (13), then the boundary control u is characterized by

$\left\{\begin{array}{ll}-\Delta {p}_{i}\left(u\right)+{\sum }_{j=1}^{n}{a}_{ij}{p}_{i}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ {p}_{i}\left(u\right)=-\left(\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}-{z}_{id}\right)\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \\ \left[\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right]=0,\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \\ {\left\{\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{i}\left(u\right)\right],\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \\ {\sum }_{i=1}^{n}{\int }_{\Gamma }\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}}N{u}_{i}\left({v}_{i}-{u}_{i}\right)\text{d}\Gamma \ge 0,\hfill & \hfill \end{array}$ (33)

together with (28) and (29) where $p\left(u\right)=\left\{{p}_{1}\left(u\right),{p}_{2}\left(u\right),\cdots ,{p}_{n}\left(u\right)\right\}$ is the adjoint state.

Proof. The optimal control $u={\left\{{u}_{i}\right\}}_{i=1}^{n}\in {\left({L}^{2}\left(\Gamma \right)\right)}^{n}$ is characterized by:

$\pi \left(u,v-u\right)\ge L\left(v-u\right)\text{ }\text{ }\forall v=\left\{{v}_{1},{v}_{2},\cdots ,{v}_{n}\right\}\in {U}_{ad},$

$\begin{array}{l}\pi \left(u,v-u\right)-L\left(v-u\right)\\ =\underset{i=1}{\overset{n}{\sum }}{\left(\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{i}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}\\ \text{\hspace{0.17em}}\text{ }\text{\hspace{0.17em}}+\underset{i=1}{\overset{n}{\sum }}{\left(N{u}_{i},{v}_{i}-{u}_{i}\right)}_{{L}^{2}\left(\Gamma \right)}-{\left({z}_{id}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}},\frac{\partial {h}_{i}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left({L}^{2}\left(\Gamma \right)\right)}\\ \ge 0,\end{array}$

then

$\underset{i=1}{\overset{n}{\sum }}{\left(\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}-{z}_{id},\frac{\partial {h}_{i}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}+\underset{i=1}{\overset{n}{\sum }}{\left(N{u}_{i},{v}_{i}-{u}_{i}\right)}_{{L}^{2}\left(\Gamma \right)}\ge 0,$ (34)

since the adjoint state is defined by (33), (34) implies

$\underset{i=1}{\overset{n}{\sum }}{\left({p}_{i}\left(u\right),\frac{\partial {h}_{i}\left(v-u\right)}{\partial {v}_{A}}-\frac{\partial {h}_{i}\left(0\right)}{\partial {v}_{A}}\right)}_{{L}^{2}\left(\Gamma \right)}+\underset{i=1}{\overset{n}{\sum }}{\left(N{u}_{i},{v}_{i}-{u}_{i}\right)}_{{L}^{2}\left(\Gamma \right)}\ge 0.$

Applying Green’s formula, we obtain

$\begin{array}{l}\underset{i=1}{\overset{n}{\sum }}{\left({A}^{*}{p}_{i}\left(u\right),{h}_{i}\left(v-u\right)\right)}_{{L}^{2}\left(\Omega \right)}+\underset{i=1}{\overset{n}{\sum }}{\left(\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}},{h}_{i}\left(v-u\right)\right)}_{{L}^{2}\left(\Gamma \right)}\\ \text{ }+a\left(p\left(u\right),h\left(v-u\right)\right)+\underset{i=1}{\overset{n}{\sum }}{\left(N{u}_{i},{v}_{i}-{u}_{i}\right)}_{{L}^{2}\left(\Gamma \right)}\ge 0.\end{array}$

Since

$\left(p,Ah\right)=\left({A}^{*}p,h\right)=a\left(p,h\right)\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{and}\text{\hspace{0.17em}}\text{\hspace{0.17em}}{A}^{*}p=0,$

we obtain by using equation (28),

$\underset{i=1}{\overset{n}{\sum }}{\left(\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}},{v}_{i}-{u}_{i}\right)}_{{L}^{2}\left(\Gamma \right)}+\underset{i=1}{\overset{n}{\sum }}{\left(N{u}_{i},{v}_{i}-{u}_{i}\right)}_{{L}^{2}\left(\Gamma \right)}\ge 0,$

hence

$\underset{i=1}{\overset{n}{\sum }}{\int }_{\Gamma }\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}}N{u}_{i}\left({v}_{i}-{u}_{i}\right)\text{d}\Gamma \ge 0.$

5. Boundary Control for n × n Cooperative Neumann Systems

We generalize here, the results which have been established in section (3) to the following n × n Neumann elliptic system

$\left\{\begin{array}{ll}-\Delta {h}_{i}+{\sum }_{j=1}^{n}{a}_{ij}{h}_{j}={f}_{i}\hfill & \text{in}\text{\hspace{0.17em}}\text{ }\Omega ,\hfill \\ \frac{\partial {h}_{i}}{\partial {\nu }_{A}}={g}_{i}\hfill & \text{on}\text{\hspace{0.17em}}\text{ }\Gamma ,\text{\hspace{0.17em}}\text{\hspace{0.17em}}i=1,2,\cdots ,n,\hfill \end{array}$ (35)

with conjugation conditions (22) and (23), where $g=\left\{{g}_{1},{g}_{2},\cdots ,{g}_{n}\right\}\in {\left({L}^{2}\left(\Gamma \right)\right)}^{n}$ are given functions. Since

${\left({H}_{0}^{1}\left(\Omega \right)\right)}^{n}\subseteq {\left({H}^{1}\left(\Omega \right)\right)}^{n},$

the bilinear form (25) is coercive on ${\left({H}^{1}\left(\Omega \right)\right)}^{n}$.

Then using Lax-Milgram lemma, there exists a unique solution y for system (35) such that:

$a\left(h,\psi \right)={L}_{N}\left(\psi \right),\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\forall \psi \in {\left({H}^{1}\left(\Omega \right)\right)}^{n},$

where

$\begin{array}{c}{L}_{N}\left(\psi \right)=\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }{f}_{i}\left(x\right){\psi }_{i}\left(x\right)\text{d}x+\underset{i=1}{\overset{n}{\sum }}{\int }_{\Gamma }\text{ }\text{ }{g}_{i}\left(x\right){\psi }_{i}\left(x\right)\text{d}x\\ \text{\hspace{0.17em}}+\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\frac{\left({R}_{2}w-\delta \right)\left[{\psi }_{i}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma -\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\text{ }\text{ }w{\psi }_{i}^{+}\text{d}\gamma ,\end{array}$

is a continuous linear form defined on ${\left({H}^{1}\left(\Omega \right)\right)}^{n}$. Let us multiply both sides of first equation of (35) by $\psi \in {\left({H}^{1}\left(\Omega \right)\right)}^{n}$ and integrate over $\Omega$, we get

$\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\left(-\Delta {h}_{i}+\underset{j=1}{\overset{n}{\sum }}\text{ }\text{ }{a}_{ij}{h}_{j}\right){\psi }_{i}\left(x\right)\text{d}x=\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }{f}_{i}{\psi }_{i}\text{d}x.$

Applying Green’s formula,

$\begin{array}{l}\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\left(-\Delta {h}_{i}\right){\psi }_{i}\text{d}x-\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }{a}_{ij}{h}_{i}{\psi }_{i}\text{d}x-\underset{i=1}{\overset{n}{\sum }}{\int }_{\Gamma }\frac{\partial {h}_{i}}{\partial {v}_{A}}{\psi }_{i}\text{d}\Gamma \\ \text{ }-\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\frac{\partial {h}_{i}}{\partial {v}_{A}}{\psi }_{i}\text{d}\gamma +\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\frac{\left[{h}_{i}\right]\left[{\psi }_{i}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma \\ =\underset{i=1}{\overset{n}{\sum }}{\int }_{\Gamma }\text{ }\text{ }{g}_{i}{\psi }_{i}\text{d}\Gamma +\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }{f}_{i}{\psi }_{i}\text{d}x\end{array}$

$\begin{array}{l}\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\left(-\Delta {h}_{i}-\underset{j=1}{\overset{n}{\sum }}{a}_{ij}{h}_{j}\right){\psi }_{i}\left(x\right)\text{d}x-\underset{i=1}{\overset{n}{\sum }}{\int }_{\Gamma }\left(\frac{\partial {h}_{i}}{\partial {\nu }_{A}}\right){\psi }_{i}\left(x\right)\text{d}\Gamma \\ \text{ }-\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\left(\frac{\partial {h}_{i}}{\partial {\nu }_{A}}\right){\psi }_{i}\left(x\right)\text{d}\gamma +\underset{i=1}{\overset{n}{\sum }}{\int }_{\gamma }\frac{\left[{h}_{i}\right]\left[{\psi }_{i}\right]}{{R}_{1}+{R}_{2}}\text{d}\gamma \\ =\underset{i=1}{\overset{n}{\sum }}{\int }_{\Gamma }\text{ }\text{ }{g}_{i}{\psi }_{i}\text{d}\Gamma +\underset{i=1}{\overset{n}{\sum }}{\int }_{\Omega }\text{ }\text{ }{f}_{i}{\psi }_{i}\text{d}x,\end{array}$

then from

$a\left(h,\psi \right)={L}_{N}\left(\psi \right),$

we obtain the Neumann conditions

$\frac{\partial {h}_{i}}{\partial {\nu }_{A}}={g}_{i}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{\hspace{0.17em}}\text{on}\text{\hspace{0.17em}}\Gamma .$

Then, we have the corresponding control problem:

The space $U={\left({L}^{2}\left(\Gamma \right)\right)}^{n}$ is the space of controls, the state $h\left(u\right)=\left\{{h}_{1}\left(u\right),{h}_{2}\left(u\right),\cdots ,{h}_{n}\left(u\right)\right\}$ of the system is given by the solution of

$\left\{\begin{array}{ll}-\Delta {h}_{i}\left(u\right)+{\sum }_{j=1}^{n}{a}_{ij}{h}_{j}\left(u\right)={f}_{i}\left(u\right)\hfill & \text{in}\text{\hspace{0.17em}}\text{ }\Omega ,\hfill \\ \frac{\partial {h}_{i}\left(u\right)}{\partial {\nu }_{A}}={g}_{i}+{u}_{i}\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \end{array}$ (36)

under conjugation conditions (29), where $u=\left\{{u}_{1},{u}_{2},\cdots ,{u}_{n}\right\}$ is a given control in ${\left({L}^{2}\left(\Gamma \right)\right)}^{n}$. For a given ${z}_{d}=\left\{{z}_{1d},{z}_{2d},\cdots ,{z}_{nd}\right\}\in {\left({L}^{2}\left(\Gamma \right)\right)}^{n}$, the cost functional is again given by (30). As in theorem (4.2), we can prove:

Theorem 5.1 Let us suppose that (26) holds and the cost functional is given by (30), there exists a unique optimal control u, such that:

$J\left(u\right)=inf\text{ }J\left(v\right)\text{ }\text{ }\forall v\in {U}_{ad}\subset {\left({L}^{2}\left(\Gamma \right)\right)}^{n},$

moreover it is characterized by the following equations and inequalities

$\left\{\begin{array}{ll}-\Delta {p}_{i}\left(u\right)+\underset{j=1}{\overset{n}{\sum }}\text{ }\text{ }{a}_{ij}{p}_{i}\left(u\right)=0\hfill & \text{in}\text{ }\text{\hspace{0.17em}}\Omega ,\hfill \\ \frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}}=\left(\frac{\partial {h}_{i}\left(u\right)}{\partial {v}_{A}}-{z}_{id}\right)\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\Gamma ,\hfill \\ \left[\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right]=0\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \\ {\left\{\frac{\partial {p}_{i}\left(u\right)}{\partial {v}_{{A}^{\ast }}}\right\}}^{±}=\frac{1}{{R}_{1}+{R}_{2}}\left[{p}_{i}\left(u\right)\right]\hfill & \text{on}\text{ }\text{\hspace{0.17em}}\gamma ,\hfill \end{array}$

$\underset{i=1}{\overset{n}{\sum }}{\left({p}_{i}\left(u\right),{v}_{i}-{u}_{i}\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}}+{\left(Nu,v-u\right)}_{{\left({L}^{2}\left(\Gamma \right)\right)}^{n}}\ge 0,\text{\hspace{0.17em}}\text{\hspace{0.17em}}i=1,2,\cdots ,n,$

together with(36) and (29), where $p\left(u\right)=\left\{{p}_{1}\left(u\right),{p}_{2}\left(u\right),\cdots ,{p}_{n}\left(u\right)\right\}$ is the adjoint state.

6. Conclusion

In the present work, we concentrated on optimal control problems for cooperative elliptic systems under conjugation conditions. We proved the existence and uniqueness of the state for 2 × 2 Dirichlet cooperative elliptic system. Then we discussed the existence and uniqueness of the optimal control of boundary type for this system and we gave the set of equations and inequalities that characterizes this control. Also, we studied the problem with Neumann condition. At last, we generalized the discussion to n × n cooperative elliptic systems under conjugation conditions.

Acknowledgements

The authors would like to express their gratitude to Professor Dr. I. M. Gali, Mathematics Department, Faculty of Science, Al-Azhar University, for suggesting the problem and critically reading the manuscript.

Cite this paper: Serag, H. , Abd-Elrhman, L. and Alsaban, A. (2021) Boundary Control for Cooperative Elliptic Systems under Conjugation Conditions. Advances in Pure Mathematics, 11, 457-471. doi: 10.4236/apm.2021.115032.
References

   Lions, J.L. (1971) Optimal Control of a System Governed by Partial Differential Equations. Springer-Verlag, New York, 170.
https://doi.org/10.1007/978-3-642-65024-6

   Kotarski, W. and El-Saify, H.A. (2006) Optimality of the Boundary Control Problem for n × n Parabolic Lag System. Journal of Mathematical Analysis and Applications, 319, 61-73.

   Serag, H.M. and Qamlo, A.H. (2001) Boundary Control of Non-Cooperative Elliptic System. Advances in Modeling Analysis, 38, 31-42.

   El-Saify, H.A., Serag, H.M. and Shehata, M.A. (2009) Time Optimal Control Problem for Cooperative Hyperbolic Systems Involving the Laplace Operator. Journal of Dynamical and Control Systems, 15, 405-423.
https://doi.org/10.1007/s10883-009-9067-y

   Gali, I.M. and Serag, H.M. (1995) Optimal Control of Cooperative Elliptic Systems Defined on Rn. Journal of the Egyptian Mathematical Society, 3, 33-39.

   Serag, H.M. (2007) Distributed Control for Cooperative Systems Involving Parabolic Operators with an Infinite Number of Variables. The IMA Journal of Mathematical Control and Information, 24, 149-161.
https://doi.org/10.1093/imamci/dnl018

   Serag, H.M., EL-Zahaby, S.A. and Abd Elrhman, L.M. (2015) Distributed Control for Cooperative Parabolic Systems with Conjugation Conditions. Journal of Progressive Research in Mathematics, 4, 348-365.

   Qamlo, A.H. and Bedaiwi, G.M. (2017) Distributed Control for 2 × 2 Coupled Infinite Order Hyperbolic Systems. Advances in Differential Equations and Control Processes, 18, 201-227.
https://doi.org/10.17654/DE018040201

   Qamlo, A.H. (2021) Boundary Control Problems for 2 × 2 Cooperative Hyperbolic Systems with Infinite Order Operators. Open Journal of Optimization, 10, 1-12.
https://doi.org/10.4236/ojop.2021.101001

   El-Saify, H.A. and Serag, H.M. (1991) Boundary Control of a Systems Governed by Non-Linear Neumann Problem. Journal of Institute of Mathematics & Computer Sciences, 2, 41-48.

   Khafagy, S. and Serag, H.M. (2018) Stability Results of Positive Weak Solution for Singular p-Laplacian Nonlinear System. Journal of Applied Mathematics & Informatics, 36, 173-179.

   Khafagy, S. and Serag, H.M. (2020) On the Existence of Positive Weak Solution for Nonlinear System with Singular Weights. Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 55, 259-267.

   Serag, H.M. and Khafagy, S. (2008) Existence of Weak Solution for n × n Nonlinear Systems Involving Different Degenerated p-Laplacian Operators. New Zealand Journal of Mathematics, 38, 75-86.

   Serag, H.M. and Khafagy, S. (2010) On Maximum Principle and Existence of Positive Weak Solutions for n × n Nonlinear Elliptic Systems Involving Degenerated p-Laplacian Operators. Turkish Journal of Mathematics, 34, 59-72.

   Hassan, H.M. and Serag, H.M. (2000) Boundary Control of Quasi-Static Problem with Viscous Boundary Conditions. Indian Journal of Pure and Applied Mathematics, 31, 767-772.

   Sergienko, I.V. and Deineka, V.S. (2001) The Dirichlet and Neumann Problems for Elliptical Equations with Conjugation Conditions and High-Precision Algorithms of Their Discretization. Cybernetics and Systems Analysis, 37, 323-347.
https://doi.org/10.1023/A:1011933625923

   Sergienko, I.V. and Deineka, V.S. (2004) Optimal Control of an Elliptic System with Conjugation Conditions and Neumann Boundary Conditions. Cybernetics and Systems Analysis, 40, 865-882.
https://doi.org/10.1007/s10559-005-0026-7

   Sergienko, I.V. and Deineka, V.S. (2005) Optimal Control of Distributed Systems with Conjugation Conditions. Springer, Berlin.

   Fleckinger, J. and Serag, H.M. (1995) Semilinear Cooperative Elliptic Systems on Rn. Rendiconti di Matematica e delle sue Applicazioni, 15, 98-108.

Top