[1] Korobeinikov, A. (2004) Global Properties of Basic Virus Dynamics Models. Bulletin of Mathematical Biology, 66, 879-883.
https://doi.org/10.1016/j.bulm.2004.02.001
[2] Korobeinikov, A. (2007) Global Properties of Infectious Disease Models with Nonlinear Incidence. Bulletin of Mathematical Biology, 69, 1871-1886.
https://doi.org/10.1007/s11538-007-9196-y
[3] Li, M.Y. and Shu, H. (2010) Global Dynamics of an In-Host Viral Model with Intracellular Delay. Bulletin of Mathematical Biology, 72, 1492-1505.
https://doi.org/10.1007/s11538-010-9503-x
[4] Wang, K.F., Fan, A.J. and Torres, A. (2010) Global Properties of an Improved Hepatitis B Virus Model. Nonlinear Analysis: Real World Applications, 11, 3131-3138.
https://doi.org/10.1016/j.nonrwa.2009.11.008
[5] Perelson, A.S., Kirschner, D.E. and De Boer, R. (1993) Dynamics of HIV Infection of CD4+ T-Cells. Mathematical Biosciences, 114, 81-125.
https://doi.org/10.1016/0025-5564(93)90043-A
[6] Herz, A.V.M., Bonhoeffer, S., Anderson,R.M., May,R.M. and Nowak,M.A. (1996) Viral Dynamics in Vivo: Limitations on Estimates of Intracellular Delay and Virus Decay. Proceedings of the National Academy of Sciences of the United States of America, 93, 7247-7251.
https://doi.org/10.1073/pnas.93.14.7247
[7] Huang, G., Ma, W. and Takeuchi, Y. (2009) Global Properties for Virus Dynamics Model with Beddington-DeAngelis Functional Response. Applied Mathematics Letters, 22, 1690-1693.
https://doi.org/10.1016/j.aml.2009.06.004
[8] Srivastava, P.K. and Chandra, P. (2010) Modeling the Dynamics of HIV and CD4+ T Cells during Primary Infection. Nonlinear Analysis: Real World Applications, 11, 612-618.
https://doi.org/10.1016/j.nonrwa.2008.10.037
[9] Guo, S.B. and Ma, W.B. (2016) Global Behavior of Delay Differential Equations Model of HIV Infection with Apoptosis. Discrete and Continuous Dynamical Systems: Series B, 21, 103-119. https://doi.org/10.3934/dcdsb.2016.21.103
[10] Song, X. and Neumann, A.U. (2007) Global Stability and Periodic Solution of the Viral Dynamics. Journal of Mathematical Analysis and Applications, 329, 281-297.
https://doi.org/10.1016/j.jmaa.2006.06.064
[11] Huang, G., Yokoi, H., Takeuchi, Y., Kajiwara, T. and Sasaki, T. (2011) Impact of Intracellular Delay, Immune Activation Delay and Nonlinear Incidence on Viral Dynamics. Japan Journal of Industrial and Applied Mathematics, 28, 383-411.
https://doi.org/10.1007/s13160-011-0045-x
[12] Hirsch, M.W., Smith, H.L. and Zhao, X.-Q. (2001) Chain Transitivity, Attractivity, and Strong Repellors for Semidynamical Systems. Journal of Dynamics and Differential Equations, 13, 107-131. https://doi.org/10.1023/A:1009044515567
[13] De Boer, R.J. and Perelson, A.S. (1998) Target Cell Limited and Immune Control Models of HIV Infection: A Comparison. Journal of Theoretical Biology, 19, 201-214.
https://doi.org/10.1006/jtbi.1997.0548
[14] Kepler, T.B. and Perelson, A.S. (1993) Cyclic Re-Entry of Germinal Center B Cells and the Efficiency of Affinity Maturation. Immunology Today, 14, 412-415.
https://doi.org/10.1016/0167-5699(93)90145-B
[15] Kuang, Y. (1993) Delay Differential Equations with Applications in Population Dynamics. Academic Press, Inc., Boston.
[16] Engelborghs, K., Luzynina, T. and Roose, D. (2002) Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL. ACM Transactions on Mathematical Software, 28, 1-21. https://doi.org/10.1145/513001.513002
[17] Beretta, E. and Kuang, Y. (2002) Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependant Parameters. SIAM Journal on Mathematical Analysis, 33, 1144-1165. https://doi.org/10.1137/S0036141000376086
[18] Ma, S.Q., Lu, Q.S. and Mei, S.L. (2005) Dynamics of a Logistic Population Model with Maturation Delay and Nonlinear Birth Rate. Discrete and Continuous Dynamical Systems: Series B, 5, 736-752. https://doi.org/10.3934/dcdsb.2005.5.735
[19] Ma, S.Q. (2018) Application of Extended Geometrical Criterion to Population Model with Two Time Delays. Journal of Mathematical Researches, 10, 63-76.
https://doi.org/10.5539/jmr.v10n3p63
[20] Ma, S.Q., Feng, Z.S. and Lu, Q.S. (2008) A Two-Parameter Geometrical Criteria for Delay Differential Equations. Discrete and Continuous Dynamical Systems: Series B, 9, 397-413.
https://doi.org/10.3934/dcdsb.2008.9.397
[21] Hale, J.K. and Verduyn Lunel, S.M. (1993) Introduction to Functional Differential Equations. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-4342-7_1
[22] Song, Z.-G. and Xu, J. (2013) Stability Switches and Double Hopf Bifurcation in a Two Neural Network System with Multiple Delays. Cognitive Neurodynamics, 7, 505-521.
https://doi.org/10.1007/s11571-013-9254-0