[1] Sillman, S. (1999) The Relation between Ozone, NOx, and Hydrocarbons in Urban and Polluted Rural Environments. Atmospheric Environment, 33, 1821-1845.
https://doi.org/10.1016/S1352-2310(98)00345-8
[2] Crutzen, P. (1974) Photochemical Reactions Initiated by and Influencing Ozone in Unpolluted Tropospheric Air. Tellus A, 26, 47-57.
https://doi.org/10.3402/tellusa.v26i1-2.9736
[3] Atkinson, R. (2000) Atmospheric Chemistry of VOCs and NOx. Atmospheric Environment, 34, 2063-2101.
https://doi.org/10.1016/S1352-2310(99)00460-4
[4] Finlayson-Pitts, B.J. (1997) Tropospheric Air Pollution: Ozone, Airborne Toxics, Polycyclic Aromatic Hydrocarbons, and Particles. Science, 276, 1045-1051.
https://doi.org/10.1126/science.276.5315.1045
[5] Simon, H., Reff, A., Wells, B., Xing, J. and Frank, N. (2015) Ozone Trends across the United States over a Period of Decreasing NOx and VOC Emissions. Environmental Science & Technology, 49, 186-195.
https://doi.org/10.1021/es504514z
[6] EPA (2018) Table of Historical Ozone National Ambient Air Quality Standards (NAAQS).
https://www.epa.gov/ground-level-ozone-pollution/table-historical-ozone-national-ambient-air-quality-standards-naaqs
[7] Kleinman, L.I., Daum, P.H., Imre, D., Lee, Y.N., Nunnermacker, L.J., Springston, S.R., Weinstein-Lloyd, J. and Rudolph, J. (2003) Correction to “Ozone Production Rate and Hydrocarbon Reactivity in 5 Urban Areas: A Cause of High Ozone Concentration in Houston”. Geophysical Research Letters, 30, 1639.
https://doi.org/10.1029/2003GL017485
[8] TCEQ (2019) Houston-Galveston-Brazoria: Current Attainment Status.
https://www.tceq.texas.gov/airquality/sip/hgb/hgb-status
[9] Lin, C.J., Ho, T.C., Chu, H.W., Yang, H., Chandru, S., Krishnarajanagar, N., Chioue, P. and Hopper, J.R. (2005) Sensitivity Analysis of Ground-Level Ozone Concentration to Emission Changes in Two Urban Regions of Southeast Texas. Journal of Environmental Management, 75, 315-323.
https://doi.org/10.1016/j.jenvman.2004.09.012
[10] TCEQ (2020) Ozone: The Facts.
https://www.tceq.texas.gov/airquality/monops/ozonefacts.html
[11] Kleinman, L.I., Daum, P.H., Imre, D., Lee, Y.N., Nunnermacker, L.J., Springston, S.R., Weinstein-Lloyd, J. and Rudolph, J. (2002) Ozone Production Rate and Hydrocarbon Reactivity in 5 Urban Areas: A Cause of High Ozone Concentration in Houston. Geophysical Research Letters, 29, 105-110.
https://doi.org/10.1029/2001GL014569
[12] Rappenglück, B., Perna, R., Zhong, S. and Morris, G.A. (2008) An Analysis of the Vertical Structure of the Atmosphere and the Upper-Level Meteorology and Their Impact on Surface Ozone Levels in Houston, Texas. Journal of Geophysical Research: Atmospheres, 113, D17315.
https://doi.org/10.1029/2007JD009745
[13] Murphy, C.F. and Allen, D.T. (2005) Hydrocarbon Emissions from Industrial Release Events in the Houston-Galveston Area and Their Impact on Ozone Formation. Atmospheric Environment, 39, 3785-3798.
https://doi.org/10.1016/j.atmosenv.2005.02.051
[14] Flues, M., Hama, P., Lemes, M.J.L., Dantas, E.S.K. and Fornaro, A. (2002) Evaluation of the Rainwater Acidity of a Rural Region Due to a Coal-Fired Power Plant in Brazil. Atmospheric Environment, 36, 2397-2404.
https://doi.org/10.1016/S1352-2310(01)00563-5
[15] Brock, C.A., Trainer, M., Ryerson, T.B., Neuman, J.A., Parrish, D.D., Holloway, J.S., Nicks, D.K., Frost, G.J., Hübler, G., Fehsenfeld, F.C., Wilson, J.C., Reeves, J.M., Lafleur, B.G., Hilbert, H., Atlas, E.L., Donnelly, S.G., Schauffler, S.M., Stroud, V.R. and Wiedinmyer, C. (2003) Particle Growth in Urban and Industrial Plumes in Texas. Journal of Geophysical Research: Atmospheres, 108, 4111.
https://doi.org/10.1029/2002JD002746
[16] Srivastava, R.K., Miller, C.A., Erickson, C. and Jambhekar, R. (2004) Emissions of Sulfur Trioxide from Coal-Fired Power Plants. Journal of the Air & Waste Management Association, 54, 750-762.
https://doi.org/10.1080/10473289.2004.10470943
[17] Hossan, I., Botlaguduru, V., Du, H., Kommalapati, R. and Huque, Z. (2018) Air Quality Impact of Biomass Co-Firing with Coal at a Power Plant in the Greater Houston Area. Open Journal of Air Pollution, 7, 263-285.
https://doi.org/10.4236/ojap.2018.73013
[18] Kommalapati, R., Shahriar, M., Botlaguduru, V., Du, H. and Huque, Z. (2018) Relative Contribution of Different Source Categories to Ozone Exceedances in the Houston-Galveston-Brazoria Area. Journal of Environmental Protection, 9, 847-858.
https://doi.org/10.4236/jep.2018.98052
[19] Reiss, R. (2006) Temporal Trends and Weekend-Weekday Differences for Benzene and 1,3-butadiene in Houston, Texas. Atmospheric Environment, 40, 4711-4724.
https://doi.org/10.1016/j.atmosenv.2006.04.023
[20] Nielsen-Gammon, J.W., Tobin, J. and McNeel, A. (2005) A Conceptual Model for Eight-Hour Ozone Exceedances in Houston, Texas. Part II: Eight-Hour Ozone Exceedances in the Houston-Galveston Metropolitan Area. HARC/TERC/TCEQ Report, 79.
https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/158249/houzone3.pdf?sequence=1&isAllowed=y
[21] Banta, R.M., Senff, C.J., et al. (2005) A Bad Air Day in Houston. American Meteorological Society, 86, 657-669.
https://doi.org/10.1175/BAMS-86-5-657
[22] Ryerson, T.B., et al. (2003), Effect of Petrochemical Industrial Emissions of Reactive Alkenes and NOx on Tropospheric Ozone Formation in Houston, Texas. Journal of Geophysical Research, 108, 4249.
https://doi.org/10.1029/2002JD003070
[23] Darby, L.S. (2005) Cluster Analysis of Surface Winds in Houston, Texas, and the Impact of Wind Patterns on Ozone. Journal of Applied Meteorology, 44, 1788-1806.
https://doi.org/10.1175/JAM2320.1
[24] Nam, J., Kimura, Y., Vizuete, W., Murphy, C. and Allen, D.T. (2006) Modeling the Impacts of Emission Events on Ozone Formation in Houston, Texas. Atmospheric Environment, 40, 5329-5341.
https://doi.org/10.1016/j.atmosenv.2006.05.002
[25] Langford, A.O., Senff, C.J., Banta, R.M., et al. (2009) Regional and Local Background Ozone in Houston during Texas Air Quality Study 2006. Journal of Geophysical Research, 114, D00F12.
https://doi.org/10.1029/2008JD011687
[26] Zhang, H., Li, J., Ying, Q., Yu, J.Z., Wu, D., Cheng, Y., He, K. and Jiang, J. (2012) Source Apportionment of PM2.5 Nitrate and Sulfate in China Using a Source-Oriented Chemical Transport Model. Atmospheric Environment, 62, 228-242.
https://doi.org/10.1016/j.atmosenv.2012.08.014
[27] Wang, X., Li, J., Zhang, Y., et al. (2009) Ozone Source Attribution during a Severe Photochemical Smog Episode in Beijing, China. Science in China Series B: Chemistry, 52, 1270-1280.
https://doi.org/10.1007/s11426-009-0137-5
[28] Li, K., Lau, A., Fung, J.C.-H., Zheng, J.Y., Zhong, L.J. and Louie, P.K.K. (2012) Ozone Source Apportionment (OSAT) to Differentiate Local Regional and Super-Regional Source Contributions in the Pearl River Delta Region, China. Journal of Geophysical Research, 117, D15305.
https://doi.org/10.1029/2011JD017340
[29] EPA (2010) Peer Review of Source Apportionment Tools.
https://www.epa.gov/sites/production/files/2020-10/documents/sourceapportionmentpeerreview.pdf
[30] Farooqui, Z.M., et al. (2013) Modeling Analysis of the Impact of Anthropogenic Emission Sources on Ozone Concentration over Selected Urban Areas in Texas. Atmospheric Pollution Research, 4, 33-42.
https://doi.org/10.5094/APR.2013.004
[31] Collet, S., et al. (2018) Future Year Ozone Source Attribution Modeling Study Using CMAQ-ISAM. Journal of Air and Waste Management Association, 68, 1239-1247.
https://doi.org/10.1080/10962247.2018.1496954
[32] TCEQ (2020) Texas Air Quality Modeling—Files and Information (2012 Episodes).
https://www.tceq.texas.gov/airquality/airmod/data/tx2012
[33] ENVIRON (2016) CAMx Source Code and Documentation.
http://camx-wp.azurewebsites.net/Files/CAMxUsersGuide_v6.30.pdf
[34] EPA (2018) Final Area Designation for the 2015 Ozone National Ambient Air Quality Standards Technical Support Document.
https://www.epa.gov/sites/production/files/2018-05/documents/tx_tsd_final.pdf
[35] EPA (2018) Approval and Promulgation of Implementation Plans; Texas; Attainment Demonstration for the Houston-Galveston-Brazoria Ozone Nonattainment Area. 83FR 24446; EPA-R06-OAR-2017-0053-FRL-9978-46-Region 6.
[36] TCEQ (2015) Redesignation Substitute Report for the Houston-Galveston-Brazoria 1997 Eight-Hour-Ozone Standard Nonattainment Area.
https://www.tceq.texas.gov/assets/public/implementation/air/sip/hgb/1997ozone_RS_Report/HGB_RS_1997_8Hr_report.pdf
[37] Liu, L., et al. (2015) Influence of Climate Change and Meteorological Factors on Houston’s Air Pollution: Ozone a Case Study. Atmosphere, 6, 623-640.
https://doi.org/10.3390/atmos6050623
[38] TCEQ (2020) Texas Air Quality Modeling-Files and Information.
https://www.tceq.texas.gov/airquality/airmod/data/tx/2012
[39] TCEQ (2009) Houston-Galveston-Brazoria Nonattainment Area Ozone Conceptual Model.
https://www.tceq.texas.gov/assets/public/implementation/air/am/modeling/hgb8h2/doc/HGB8H2_Conceptual_Model_20090519.pdf
[40] TCEQ (2017) Information Submitted for the Limestone Generating Station and the WA Parish Electric Generating Station (Attachment F).
https://www.tceq.texas.gov/assets/public/implementation/air/sip/so2/2015RevisedRecommendation/Att_F_NRG.pdf
[41] Daum, P.H., Kleinman, L.I., Springston, S.R., Nunnermacker, L.J., Lee, Y., Weinstein-Lloyd, J., Zheng, J. and Berkowitz, C.M. (2003) A Comparative Study of O3 Formation in the Houston Urban and Industrial Plumes during the 2000 Texas Air Quality Study. Journal of Geophysical Research, 108, 18 p.
https://doi.org/10.1029/2003JD003552
[42] Jiang, G. and Fast, J.D. (2004) Modeling the Effects of VOC and NOX Emission Sources on Ozone Formation in Houston during the TexAQS 2000 Field Campaign. Atmospheric Environment, 38, 5071-5085.
https://doi.org/10.1016/j.atmosenv.2004.06.012
[43] Zhang, H. and Ying, Q. (2011) Contributions of Local and Regional Sources of NOx to Ozone Concentrations in Southeast Texas. Atmospheric Environment, 45, 2877-2887.
https://doi.org/10.1016/j.atmosenv.2011.02.047
[44] TCEQ (2019) Texas Emission Sources—A Graphical Representation.
https://www.tceq.texas.gov/airquality/areasource/emissions-sources-charts
[45] Ying, Q. (2009) Source Contributions of Volatile Organic Compounds to Ozone Formation in Southeast Texas. The 8th Annual CMAS Conference, Chapel Hill, 19-21 October 2009, 1-6.
https://www.cmascenter.org/conference/2009/abstracts/ying_source_contributions_2009.pdf
[46] Kemball-Cook, S., Parish, D., et al. (2009) Contributions of Regional Transport and Local Sources to Ozone Exceedances in Houston and Dallas: Comparison of Results from a Photochemical Grid Model to Aircraft and Surface Measurements. Journal of Geophysical Research, 114, D00F02.
https://doi.org/10.1029/2008JD010248
[47] Xiao, X., Cohan, D.S., Byun, D.W. and Ngan, F. (2010) Highly Nonlinear Ozone Formation in the Houston Region and Implications for Emission Controls. Journal of Geophysical Research, 115, D23309.
https://doi.org/10.1029/2010JD014435
[48] Wang, Y.X. and Talbot, R. (2017) High Background Ozone Events in the Houston-Galveston-Brazoria Area: Causes, Effects, and Case Studies of Central American Fires. Texas Air Quality Research Program. AQRP Project 16-008.
http://aqrp.ceer.utexas.edu/projectinfoFY16_17/16-008/16-008%20Final%20Report.pdf