Back
 AE  Vol.9 No.2 , April 2021
Attractivity or Repellence: Relation between the Endophytic Fungi of Acalypha, Colocasia and the Leaf-Cutting Ants—Atta sexdens
Abstract: Symbiotic relations are present in the nature and can contribute to the success of the organisms involved. Endophytic fungi live within the leaf tissues without causing any harm to the host plant, and some of them can be a defense mechanism against the attack by the leaf-cutting ants. Ants of the genus Atta are known as leaf-cutting ants and have an obligatory association with the fungus Leucoagaricus gongylophorus, cutting pieces of leaves and bringing them back to the colony to the fungus. The present study aimed to find out the endophytic fungi community of an attractive plant (Acalypha wilkesiana) and a less attractive plant (Colocasia esculenta) to the ants Atta sexdens. We found out that the communities are different in quantity and in composition and 73% of the isolated fungi were from A. wilkesiana, which has fungi known as attractive to leaf-cutting ants, such as genus Colletotrichum, Pestalotiopsis, Phomopsis and Xylaria. On the other hand, in C. esculenta, there was found the genus Fusarium, known to be reject by the leaf-cutting ants, and less fungal diversity than in the attractive plant A. wilkesiana. Therefore, our data suggest that attractivity or repelence of a plant to the leaf-cutting ants could be related to presence or ausence of determinated fungi more than the quantity of fungi present in a leaf.
Cite this paper: Machado, L. , da Silva, T. , Polezel, D. , de Oliveira, A. , de O. Ramalho, M. , Pagnocca, F. and Bueno, O. (2021) Attractivity or Repellence: Relation between the Endophytic Fungi of Acalypha, Colocasia and the Leaf-Cutting Ants—Atta sexdens. Advances in Entomology, 9, 85-99. doi: 10.4236/ae.2021.92008.
References

[1]   Hajek, A.E. and St Leger, R.J. (1994) Interactions between Fungal Pathogens and Insect Hosts. Annual Review of Entomology, 39, 293-322.
https://doi.org/10.1146/annurev.en.39.010194.001453

[2]   Gilbert, G.S. and Strong, D.R. (2007) Fungal Symbionts of Tropical Trees. Ecology, 88, 539-540.
https://doi.org/10.1890/06-1671

[3]   Hassani, M.A., Durán, P. and Hacquard, S. (2018) Microbial Interactions within the Plant Holobiont. Microbiome, 6, 58.
https://doi.org/10.1186/s40168-018-0445-0

[4]   Arnold, A.E. and Lutzoni, F. (2007) Diversity and Host Range of Foliar Fungal Endophytes: Are Tropical Leaves Biodiversity Hotspots? Ecology, 88, 541-549.
https://doi.org/10.1890/05-1459

[5]   Arnold, A.E., Maynard, Z., Gilbert, G.S., Coley, P.D. and Kursar, T.A. (2000) Are Tropical Fungal Endophytes Hyperdiverse? Ecology Letters, 3, 267-274.
https://doi.org/10.1046/j.1461-0248.2000.00159.x

[6]   Mussi-Dias, V., Araújo, A.C.O., Silveira, S.F., Rocabado, J.M.A. and Araújo, K.L. (2012) Fungos Endofíticos Associados a Plantas Medicinais. Revista Brasileira de Plantas Medicinais, 14, 261-266.
https://doi.org/10.1590/S1516-05722012000200002
http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1516-05722012000200002&lang=pt

[7]   Van Bael, S.A., Estrada, C., Rehner, S.A., Santos, J.F. and Wcislo, W.T. (2012) Leaf Endophyte Load Influences Fungal Garden Development in Leaf-Cutting Ants. BMC Ecology, 12, 23.
https://doi.org/10.1186/1472-6785-12-23

[8]   Rocha, S.L., Evans, H.C., Jorge, V.L., Cardoso, L.A.O., Pereira, F.S.T., Rocha, F.B., Barreto, R.W., Hart, A.G. and Elliot, S.L. (2017) Recognition of Endophytic Trichoderma Species by Leaf-Cutting Ants and Their Potential in a Trojan-Horse Management Strategy. Royal Society Open Science, 4, Article ID: 160628.
https://doi.org/10.1098/rsos.160628

[9]   Mighell, K. and Van Bael, S.A. (2016) Selective Elimination of Microfungi in Leaf-Cutting Ant Gardens. Fungal Ecology, 24, 15-20.
https://doi.org/10.1016/j.funeco.2016.08.009

[10]   Van Bael, S.A., Fernández-Marín, H., Valencia, M.C., Rojas, E.I., Wcislo, W.T. and Herre, E.A. (2009) Two Fungal Symbioses Collide: Endophytic Fungi Are Not Welcome in Leaf-Cutting Ant Gardens. Proceedings of the Royal Society B: Biological Sciences, 276, 2419-2426.
https://doi.org/10.1098/rspb.2009.0196

[11]   Ward, P.S., Brady, S.G., Fisher, B.L. and Schultz, T.R. (2015) The Evolution of Myrmicine Ants: Phylogeny and Biogeography of a Hyperdiverse Ant Clade (Hymenoptera: Formicidae). Systematic Entomology, 40, 61-81.
https://doi.org/10.1111/syen.12090

[12]   Fowler, H.G., Pagani, M.I., Da Silva, O.A., Forti, L.C., Da Silva, V.P. and De Vasconcelos, H.L. (1989) A Pest Is a Pest Is a Pest? The Dilemma of Neotropical Leaf-Cutting Ants: Keystone Taxa of Natural Ecosystems. Environmental Management, 13, 671-675.
https://doi.org/10.1007/BF01868306

[13]   Silva, A., Bacci, M., Pagnocca, F.C., Bueno, O.C. and Hebling, M.J.A. (2006) Starch Metabolism in Leucoagaricus gongylophorus, the Symbiotic Fungus of Leaf-Cutting Ants. Microbiological Research, 161, 299-303.
https://doi.org/10.1016/j.micres.2005.11.001

[14]   Rocha, S.L., Jorge, V.L., Della Lucia, T.M.C., Barreto, R.W., Evans, H.C. and Elliot, S.L. (2014) Quality Control by Leaf-Cutting Ants: Evidence from Communities of Endophytic Fungi in Foraged and Rejected Vegetation. Arthropod-Plant Interactions, 8, 485-493.
https://doi.org/10.1007/s11829-014-9329-9

[15]   Pagnocca, F.C., Masiulionis, V.E. and Rodrigues, A. (2012) Specialized Fungal Parasites and Opportunistic Fungi in Gardens of Attine Ants. Psyche (London), 2012, Article ID: 905109.
https://doi.org/10.1155/2012/905109

[16]   Nagamoto, N.S., Carlos, A.A., Moreira, S.M., Verza, S.S., Hirose, G.L. and Forti, L.C. (2009) Differentiation in Selection of Dicots and Grasses by the Leaf-Cutter Ants Atta capiguara, Atta laevigata and Atta sexdens rubropilosa. Sociobiology, 54, 127-138.

[17]   Nagamoto, N.S., Barbieri, R.F., Forti, L.C., Cardoso, S.R.S., Moreira, S.M. and Lopes, J.F.S. (2011) Attractiveness of Copperleaf-Based Bait to Leaf-Cutting Ants. Ciência Rural, 41, 931-934.
https://doi.org/10.1590/S0103-84782011005000070

[18]   Cardiel Sanz, J. (1995) LasEspecies Herbáceas de Acalypha (Euphorbiaceae) de Colombia. Anales del JardínBotánico de Madrid, 52, 151-157.

[19]   Odjegba, V.J. and Alokolaro, A.A. (2013) Simulated Drought and Salinity Modulates the Production of Phytochemicals in Acalypha Wilkesiana. Journal of Plant Studies, 2, 105-112.
https://doi.org/10.5539/jps.v2n2p105

[20]   Paul, J. and Roces, F. (2003) Fluid Intake Rates in Ants Correlate with Their Feeding Habits. Journal of Insect Physiology, 49, 347-357.
https://doi.org/10.1016/S0022-1910(03)00019-2

[21]   Christman, S. (1999) Acalypha Wilkesiana.
https://floridata.com/plant/2

[22]   Meer, R.K.V., Jaffe, K. and Cedeno, A. (1990) Applied Myrmecology: A World Perspective.

[23]   Thakur, K., Kaur, M., Kaur, S., Kaur, A., Kamboj, S.S. and Singh, J. (2013) Purification of Colocasia esculenta lectin and Determination of Its Anti-Insect Potential towards Bactrocera cucurbitae. Journal of Environmental Biology, 34, 31-36.

[24]   Yang, A.H. and Yeh, K.W. (2005) Molecular Cloning, Recombinant Gene Expression, and Antifungal Activity of Cystatin from Taro (Colocasia esculenta Cv. Kaosiung No. 1). Planta, 221, 493-501.
https://doi.org/10.1007/s00425-004-1462-8

[25]   Das, A., Roy, A., Hess, D. and Das, S. (2013) Characterization of a Highly Potent Insecticidal Lectin from Colocasia esculenta Tuber and Cloning of Its Coding Sequence. American Journal of Plant Sciences, 4, 408-416.
https://doi.org/10.4236/ajps.2013.42A053

[26]   Rajashekar, Y., Tonsing, N., Shantibala, T. and Manjunath, J.R. (2016) 2,3-Dimethylmaleic Anhydride (3,4-Dimethyl-2, 5-Furandione): A Plant Derived Insecticidal Molecule from Colocasia esculenta var. esculenta (L.) Schott. Scientific Reports, 6, Article No. 20546.
https://doi.org/10.1038/srep20546

[27]   De Oliveira Gondim, A.R., Puiatti, M., Ventrella, M.C. and Cecon, P.R. (2008) Plasticidade Anatómica Da Folha de Taro Cultivado Sob Diferentes Condicoes de Sombreamento. Bragantia, 67, 1037-1045.
https://doi.org/10.1590/S0006-87052008000400028

[28]   Noronha, N.C., Forti, L.C., Camargo, R.S. and Ramos, V.M. (2009) Sites of Defoliation by Atta sexdens rubropilosa (Hymenoptera, Formicidae) in Artificial Plants. Sociobiology, 53, 795-804.

[29]   Araújo, W.L., Marcon, J., Maccheroni, W., Van Elsas, J.D., Van Vuurde, J.W.L. and Azevedo, J.L. (2002) Diversity of Endophytic Bacterial Populations and Their Interaction with Xylella fastidiosa in Citrus Plants. Applied and Environmental Microbiology, 68, 4906-4914.
https://doi.org/10.1128/AEM.68.10.4906-4914.2002

[30]   Moller, E.M., Bahnweg, G., Sandermann, H. and Geiger, H.H. (1992) A Simple and Efficient Protocol for Isolation of High Molecular Weight DNA from Filamentous Fungi, Fruit Bodies, and Infected Plant Tissues. Nucleic Acids Research, 20, 6115-6116.
https://doi.org/10.1093/nar/20.22.6115

[31]   Gerardo, N.M., Mueller, U.G., Price, S.L. and Currie, C.R. (2004) Exploiting a Mutualism: Parasite Specialization on Cultivars within the Fungus-Growing Ant Symbiosis. Proceedings of the Royal Society B: Biological Sciences, 271, 1791-1798.
https://doi.org/10.1098/rspb.2004.2792

[32]   Gardes, M. and Bruns, T.D. (1993) ITS Primers with Enhanced Specificity for Basidiomycetes—Application to the Identification of Mycorrhizae and Rusts. Molecular Ecology, 2, 113-118.
https://doi.org/10.1111/j.1365-294X.1993.tb00005.x

[33]   White, T.J., Lee, S.B., Bruns, T.D. and Taylor, J.W. (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M.A., et al., Eds., PCR Proto-Cols: A Guide to Methods and Applications, Academic Press, Inc., New York, 315-322.
https://doi.org/10.1016/B978-0-12-372180-8.50042-1

[34]   Ramalho, M.O., Martins, C., Silva, L.M.R., Martins, V.G. and Bueno, O.C. (2016) Molecular Profile of the Brazilian Weaver Ant Camponotus textor Forel (Hymenoptera, Formicidae). Neotropical Entomology, 45, 463-470.
https://doi.org/10.1007/s13744-016-0392-z

[35]   Hall, T.A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

[36]   Higgins, D.G., Bleasby, A.J. and Fuchs, R. (1992) CLUSTAL V: Improved Software for Multiple Sequence Alignment. Bioinformatics, 8, 189-191.
https://doi.org/10.1093/bioinformatics/8.2.189

[37]   Chapla, V.M., Biasetto, C.R. and Araujo, A.R. (2013) Field Structural-Lithofacie Zones for Shear Remelt Granite of Lianyunshan in Hunan Province. Revista Virtual de Química, 5, 421-437.
https://doi.org/10.5935/1984-6835.20130036

[38]   Souza, A., Pereira, J.O., et al. (2004) Atividade Antimicrobiana de Fungos Endofíticos Isolados de Plantas Tóxicas Da Amazonia: Palicourea longiflora (Aubl.) Rich e Strychnos Cogens Bentham. Acta Amazonica, 34, 185-195.
https://doi.org/10.1590/S0044-59672004000200006

[39]   Raviraja, N.S., Maria, G.L. and Sridhar, K.R. (2006) Antimicrobial Evaluation of Endophytic Fungi Inhabiting Medicinal Plants of the Western Ghats of India. Engineering in Life Sciences, 6, 515-520.
https://doi.org/10.1002/elsc.200620145

[40]   Sousa, J.P.B., Aguilar-Pérez, M.M., Arnold, A.E., Rios, N., Coley, P.D., Kursar, T.A. and Cubilla-Rios, L. (2016) Chemical Constituents and Their Antibacterial Activity from the Tropical Endophytic Fungus Diaporthe Sp. F2934. Journal of Applied Microbiology, 120, 1501-1508.
https://doi.org/10.1111/jam.13132

[41]   Mapperson, R.R., Kotiw, M., Davis, R.A. and Dearnaley, J.D.W. (2014) The Diversity and Antimicrobial Activity of Preussia Sp. Endophytes Isolated from Australian Dry Rainforests. Current Microbiology, 68, 30-37.
https://doi.org/10.1007/s00284-013-0415-5

[42]   Krohn, K., Michel, A., Florke, U., Aust, H.-J., Draeger, S. and Schulz, B. (1994) Biologically Active Metabolites from Fungi, 5. Palmarumycins C1-C16 from Coniothyrium sp.: Isolation, Structure Elucidation, and Biological Activity. Liebigs Annalen der Chemie, 1994, 1099-1108.
https://doi.org/10.1002/jlac.199419941108

[43]   Strobel, G., Ford, E., Worapong, J., Harper, J.K., Arif, A.M., Grant, D.M., Fung, P.C.W. and Ming Wah Chau, R. (2002) Isopestacin, an Isobenzofuranone from Pestalotiopsis microspora, Possessing Antifungal and Antioxidant Activities. Phytochemistry, 60, 179-183.
https://doi.org/10.1016/S0031-9422(02)00062-6

[44]   Campos, F.F., Rosa, L.H., Cota, B.B., Caligiorne, R.B., TelesRabello, A.L., Alves, T.M.A., Rosa, C.A. and Zani, C.L. (2008) Leishmanicidal Metabolites from Cochliobolus Sp., an Endophytic Fungus Isolated from Piptadenia adiantoides (Fabaceae). PLoS Neglected Tropical Diseases, 2, e348.
https://doi.org/10.1371/journal.pntd.0000348

[45]   Fisher, P.J., Stradling, D.J., Sutton, B.C. and Petrini, L.E. (1996) Microfungi in the Fungus Gardens of the Leaf-Cutting Ant Atta Cephalotes: A Preliminary Study. Mycological Research, 100, 541-546.
https://doi.org/10.1016/S0953-7562(96)80006-2

[46]   Coblentz, K.E. and Van Bael, S.A. (2013) Field Colonies of Leaf-Cutting Ants Select Plant Materials Containing Low Abundances of Endophytic Fungi. Ecosphere, 4, art66.
https://doi.org/10.1890/ES13-00012.1

[47]   Bittleston, L.S., Brockmann, F., Wcislo, W. and Van Bael, S.A. (2011) Endophytic Fungi Reduce Leaf-Cutting Ant Damage to Seedlings. Biology Letters, 7, 30-32.
https://doi.org/10.1098/rsbl.2010.0456

[48]   Silva, A.D. (2016) Bioprospeccao Do Fungo Endofítico Hypoxylon Investiens Associado à Alga Marinha Asparagopsis Taxiformis: Potencial Antifúngico, Anticolinesterásico e Antitumoral. Unesp—Universidade Estadual Paulista “Júlio de Mesquita Filho”.

[49]   Dos Santos, C.M., Da Silva Ribeiro, A., Garcia, A., Polli, A.D., Polonio, J.C., Azevedo, J.L. and Pamphile, J.A. (2019) Actividad Enzimatica y Antagonista de Los Hongos Endofiticos de Sapindus Saponaria L. Revista Acta Biologica Colombiana, 24, 322.
https://doi.org/10.15446/abc.v24n2.74717

[50]   Van Bael, S.A., Seid, M.A. and Wcislo, W.T. (2012) Endophytic Fungi Increase the Processing Rate of Leaves by Leaf-Cutting Ants (Atta). Ecological Entomology, 37, 318-321.
https://doi.org/10.1111/j.1365-2311.2012.01364.x

[51]   Van Bael, S.A., Estrada, C. and Wcislo, W.T. (2011) Fungal-Fungal Interactions in Leaf-Cutting Ant Agriculture. Psyche (London), 2011, Article ID: 617478.
https://doi.org/10.1155/2011/617478

[52]   Estrada, C., Wcislo, W.T. and Van Bael, S.A. (2013) Symbiotic Fungi Alter Plant Chemistry That Discourages Leaf-Cutting Ants. New Phytologist, 198, 241-251.
https://doi.org/10.1111/nph.12140

 
 
Top