Back
 AS  Vol.12 No.4 , April 2021
Early Postemergence Herbicide Tank-Mixtures for Control of Waterhemp Resistant to Four Herbicide Modes of Action in Corn
Abstract: Multiple-herbicide-resistant (MHR) waterhemp has been confirmed and is difficult to control for growers in Ontario, Canada and in the Midwestern United States. The objective of this study was to evaluate early post-emergence (EPOST) herbicides for control of MHR waterhemp in field corn. Five field trials were conducted over a two-year period (2019, 2020) at sites on Walpole Island, ON and near Cottam, ON, Canada. Thirteen herbicide tank-mixtures containing multiple modes-of-action (MOA) were applied EPOST to 5 cm MHR waterhemp in field corn. Control of MHR waterhemp varied by site due to variable plant density, plant biomass, and number of herbicide-resistant individuals across research sites and years. Control of MHR waterhemp ranged from 90% to 100% with glyphosate + S-metolachlor/mesotrione/ bicyclopyrone/atrazine, glyphosate/2,4-D choline + rimsulfuron + mesotrione + atrazine, glyphosate + S-metolachlor/atrazine/mesotrione, glyphosate + mesotrione + atrazine, glyphosate/S-metolachlor/mesotrione + atrazine, glyphosate + S-metolachlor/mesotrione/bicyclopyrone, glyphosate/2,4-D choline + rimsulfuron + mesotrione, and glyphosate + pyroxasulfone + dicamba/atrazine at 4, 8, and 12 WAA. Control of MHR waterhemp ranged from 70% to 100% with glyphosate + topramezone/dimethenamid-P + dicamba/atrazine, glyphosate + isoxaflutole + atrazine, and glyphosate + tolpyralate + atrazine at 4, 8, and 12 WAA. Control of MHR waterhemp was similar for all herbicide programs, except glyphosate + dicamba/atrazine and glyphosate + S-metolachlor/atrazine which resulted in the lowest control at three of five sites that ranged from 63% to 89% and 61% to 76%, respectively. Crop injury was ≤10% for herbicide programs tested, except 28% to 31% corn injury with glyphosate/2,4-D choline + rimsulfuron + mesotrione + atrazine; however, without effect on corn grain yield. Corn yield was comparable with all herbicide programs evaluated in this study. It is concluded that there are herbicide programs that provide control of emerged and full-season residual control of MHR waterhemp in field corn.
Cite this paper: Willemse, C. , Soltani, N. , Benoit, L. , Jhala, A. , Hooker, D. , Robinson, D. and Sikkema, P. (2021) Early Postemergence Herbicide Tank-Mixtures for Control of Waterhemp Resistant to Four Herbicide Modes of Action in Corn. Agricultural Sciences, 12, 354-369. doi: 10.4236/as.2021.124023.
References

[1]   Green, J.M. and Owen, M.D. (2011) Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management. Journal of Agricultural and Food Chemistry, 59, 5819-5829.
https://doi.org/10.1021/jf101286h

[2]   Steckel, L.E. and Sprague, C.L. (2004) Common Waterhemp (Amaranthus rudis) Interference in Corn. Weed Science, 52, 359-364.
https://doi.org/10.1614/WS-03-066R1

[3]   Benoit, L., Soltani, N., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2019b) Efficacy of HPPD-Inhibiting Herbicides Applied Preemergence or Postemergence for Control of Multiple Herbicide Resistant Waterhemp [Amaranthus tuberculatus (Moq.) Sauer]. Canadian Journal of Plant Science, 99, 379-383.
https://doi.org/10.1139/cjps-2018-0320

[4]   Heap, I. (2020) The International Survey of Herbicide Resistant Weeds.
http://www.weedscience.org

[5]   Costea, M., Weaver, S.E. and Tardif, F.J. (2005) The Biology of Invasive Alien Plants in Canada. 3. Amaranthus tuberculatus (Moq.) Sauer var. rudis (Sauer) Costea & Tardif. Canadian Journal of Plant Science, 85, 507-522.
https://doi.org/10.4141/P04-101

[6]   Hartzler, R.G., Buhler, D.D. and Stoltenberg, D.E. (1999) Emergence Characteristics of Four Annual Weed Species. Weed Science, 47, 578-584.
https://doi.org/10.1017/S0043174500092298

[7]   Horak, M.J. and Loughin, T.M. (2000) Growth Analysis of Four Amaranthus Species. Weed Science, 48, 347-355.
https://doi.org/10.1614/0043-1745(2000)048[0347:GAOFAS]2.0.CO;2

[8]   Schleufer, I.L., Roeth, F.W. and Mortensen, D.A. (1992) Triazine Resistant Amaranthus Control. Proceeding of the North Central Weed Science Society, 47, 20-21.

[9]   Shoup, D.E., Al-Khatib, K. and Peterson, D.E. (2003) Common Waterhemp (Amaranthus rudis) Resistance to Protoporphyrinogen Oxidase-Inhibiting Herbicides. Weed Science, 51, 145-150.
https://doi.org/10.1614/0043-1745(2003)051[0145:CWARRT]2.0.CO;2

[10]   Shergill, L., Barlow, B., Bish, M. and Bradley, K. (2018) Investigations of 2,4-D and Multiple Herbicide Resistance in a Missouri Waterhemp (Amaranthus tuberculatus) Population. Weed Science, 66, 386-394.
https://doi.org/10.1017/wsc.2017.82

[11]   Strom, S.A., Gonzini, L.C., Mitsdarfer, C., Davis, A.S., Riechers, D.E. and Hager, A.G. (2019) Characterization of Multiple Herbicide-Resistant Waterhemp (Amaranthus tuberculatus) Populations from Illinois to VLCFA-Inhibiting Herbicides. Weed Science, 67, 369-379.
https://doi.org/10.1017/wsc.2019.13

[12]   Bell, M.S., Hager, A.G. and Tranel, P.J. (2013) Multiple Resistance to Herbicides from Four Environment-of-Action Groups in Waterhemp (Amaranthus tuberculatus). Weed Science, 61, 460-468.
https://doi.org/10.1614/WS-D-12-00166.1

[13]   Hall, M.R., Swanton, C.J. and Anderson, G.W. (1992) The Critical Period of Weed Control in Grain Corn (Zea mays). Weed Science, 40, 441-447.
https://doi.org/10.1017/S0043174500051882

[14]   Cordes, J.C., Johnson, W.G., Scharf, P. and Smeda, R.J. (2004) Late-Emerging Common Waterhemp (Amaranthus rudis) Interference in Conventional Tillage Corn. Weed Technology, 18, 999-1005.
https://doi.org/10.1614/WT-03-185R

[15]   Nordby, D.E. and Hartzler, R.G. (2004) Influence of Corn on Common Waterhemp (Amaranthus rudis) Growth and Fecundity. Weed Science, 52, 255-259.
https://doi.org/10.1614/WS-03-060R

[16]   Soltani, N., Vyn, J.D. and Sikkema, P.H. (2009) Control of Common Waterhemp (Amaranthus tuberculatus var. rudis) in Corn and Soybean with Sequential Herbicide Applications. Canadian Journal of Plant Science, 89, 127-132.
https://doi.org/10.4141/CJPS08051

[17]   Cox, W.J., Hahn, R.R. and Stachowski, P.J. (2006) Time of Weed Removal with Glyphosate Affects Corn Growth and Yield Components. Agronomy Journal, 98, 349-353.
https://doi.org/10.2134/agronj2005.0078

[18]   Knezevic, S.Z., Evans, S.P., Blankenship, E.E., Van Acker, R.C. and Lindquist, J.L. (2002) Critical Period of Weed Control: The Concept and Data Analysis. Weed Science, 50, 773-786.
https://doi.org/10.1614/0043-1745(2002)050[0773:CPFWCT]2.0.CO;2

[19]   Benoit, L., Soltani, N., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2019) Control of Multiple-Resistant Waterhemp [Amaranthus tuberculatus (Moq.) Sauer] with Preemergence and Postemergence Herbicides in Corn in Ontario. Canadian Journal of Plant Science, 99, 364-370.
https://doi.org/10.1139/cjps-2018-0087

[20]   Hedges, B.K., Soltani, N., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2018) Control of Glyphosate-Resistant Waterhemp with Two-Pass Weed Control Strategies in Glyphosate/Dicamba-Resistant Soybean. American Journal of Plant Sciences, 9, 1424-1432.
https://doi.org/10.4236/ajps.2018.97104

[21]   Jhala, A.J., Sandell, L.D., Sarangi, D., Kruger, G.R. and Knezevic, S.Z. (2017) Control of Glyphosate-Resistant Common Waterhemp (Amaranthus rudis) in Glufosinate-Tolerant Soybean. Weed Technology, 31, 32-45.
https://doi.org/10.1017/wet.2016.8

[22]   Mitchell, G., Bartlett, D.W., Fraser, T.E.M., Hawkes, T.R., Holt, D.C., Townson, J.K. and Wichert, R.A. (2001) Mesotrione: A New Selective Herbicide for Use in Maize. Pest Management Science, 57, 120-128.
https://doi.org/10.1002/1526-4998(200102)57:2<120::AID-PS254>3.0.CO;2-E

[23]   Osipitan, O.A., Scott, J.E. and Knezevic, S.Z. (2018) Tolpyralate Applied Alone and with Atrazine for Weed Control in Corn. The Journal of Agricultural Science, 10, 32-39.
https://doi.org/10.5539/jas.v10n10p32

[24]   Williams, M.M., Boydston, R.A., Peachey, R.E. and Robinson, D. (2011) Significance of Atrazine as a Tank-Mix Partner with Tembotrione. Weed Technology, 25, 299-302.
https://doi.org/10.1614/WT-D-10-00140.1

[25]   Hugie, J.A., Bollero, G.A., Tranel, P.J. and Riechers, D.E. (2008) Defining the Rate Requirements for Synergism between Mesotrione and Atrazine in Redroot Pigweed (Amaranthus retroflexus). Weed Science, 56, 265-270.
https://doi.org/10.1614/WS-07-128.1

[26]   Khort, J.R. and Sprague, C.L. (2017) Response of a Multiple-Resistant Palmer Amaranth (Amaranthus palmeri) Population to Four HPPD-Inhibiting Herbicides Applied Alone and with Atrazine. Weed Science, 65, 534-535.
https://doi.org/10.1017/wsc.2017.28

[27]   Woodyard, A.J., Bollero, G.A. and Riechers, D.E. (2009) Broadleaf Weed Management in Corn Utilizing Synergistic Postemergence Herbicide Combinations. Weed Technology, 23, 513-518.
https://doi.org/10.1614/WT-08-188.1

[28]   Armel, G.R., Richardson, R.J., Wilson, H.P. and Hines, T.E. (2009) Strategies for Control of Horseweed (Conyza canadensis) and Other Winter Annual Weeds in No-Till Corn. Weed Technology, 23, 379-383.
https://doi.org/10.1614/WT-08-094.1

[29]   Hankamer, B., Barber, J. and Boekema, E.J. (1997) Structure and Membrane Organization of Photosystem II in Green Plants. Annual Review of Plant Physiology and Plant Molecular Biology, 48, 641-671.
https://doi.org/10.1146/annurev.arplant.48.1.641

[30]   Anderson, D.D., Higley, L.G., Martin, A.R. and Roeth, F.W. (1996) Competition between Triazine-Resistant and Susceptible Common Waterhemp (Amaranthus rudis). Weed Science, 44, 853-859.
https://doi.org/10.1017/S0043174500094820

[31]   Vyn, J.D., Swanton, C.J., Weaver, S.E. and Sikkema, P.H. (2006) Control of Amaranthus tuberculatus var. rudis (Common Waterhemp) with Pre and Post-Emergence Herbicides in Zea mays L. (Maize). Crop Protection, 25, 1051-1056.
https://doi.org/10.1016/j.cropro.2006.01.016

[32]   Munro, I.C., Carlo, G.L., ORR, J.C., Sund, K.G., Wilson, R.M., Kennepohl, E., Lynch, B.S., Jablinske, M. and Lee, N.L. (1992) A Comprehensive, Integrated Review and Evaluation of the Scientific Evidence Relating to the Safety of the Herbicide 2,4-D. Journal of the American College of Toxicology, 11, 559-604.
https://doi.org/10.3109/10915819209141893

[33]   Benoit, L., Hedges, B., Schryver, M.G., Soltani, N., Hooker, D.C., Robinson, D.E., Laforest, M., Soufiane, B., Tranel, P.J., Giacomini, D. and Sikkema, P.H. (2020) The First Record of Protoporphyrinogen Oxidase and Four-Way Herbicide Resistance in Eastern Canada. Canadian Journal of Plant Science, 100, 327-331.
https://doi.org/10.1139/cjps-2018-0326

[34]   Schryver, M.G., Soltani, N., Hooker, D.C., Robinson, D.E., Tranel, P.J. and Sikkema, P.H. (2017) Control of Glyphosate-Resistant Waterhemp (Amaranthus tuberculatus var rudis) with Dicamba and Dimethenamid-P in Ontario. Canadian Journal of Plant Science, 98, 362-369.
https://doi.org/10.1139/CJPS-2017-0052

[35]   Anonymous (2018) ENLIST DUOTM Herbicide Label. Corteva Agriscience, Wilmington.

[36]   Robinson, A.P., Simpson, D.M. and Johnson, W.G. (2012) Summer Annual Weed Control with 2,4-D and Glyphosate. Weed Technology, 26, 657-660.
https://doi.org/10.1614/WT-D-12-00081.1

[37]   Ontario Ministry of Agriculture, Food and Rural Affairs (OMAFRA) (2018) Publication 75A: Guide to Weed Control in Field Crops 2018. Queen’s Printer, Toronto.

[38]   Ruen, D.C., Scherder, E.F., Ditmarsen, S.C., Prasifka, P.L., Ellis, J.M., Simpson, D.M., Gallup, C.A. and Hopkins, B.W. (2017) Tolerance of Corn with Glyphosate Resistance and the Aryloxyalkanoate Dioxygenase Trait (AAD-1) to 2,4-D Choline and Glyphosate. Weed Technology, 31, 217-224.
https://doi.org/10.1017/wet.2016.20

[39]   Miller, R.M. and Norsworthy, J.K. (2016) Evaluation of Herbicide Programs for Use in a 2,4-D-Resistant Soybean Technology for Control of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri). Weed Technology, 30, 366-376.
https://doi.org/10.1614/WT-D-15-00129.1

[40]   Oliveira, M.C., Jhala, A.J., Gains, T., Irmak, S., Amundsen, K., Scott, J.E. and Knezevic, S.Z. (2017) Confirmation and Control of HPPD-Inhibiting Herbicide-Resistant Waterhemp (Amaranthus tuberculatus) in Nebraska. Weed Technology, 31, 67-79.
https://doi.org/10.1017/wet.2016.4

[41]   Sarangi, D., Sandell, L.D., Knezevic, S.Z., Aulakh, J.S., Lindquist, J.L., Irmak, S. and Jhala, A.J. (2015) Confirmation and Control of Glyphosate-Resistant Common Waterhemp (Amaranthus rudis) in Nebraska. Weed Technology, 29, 82-92.
https://doi.org/10.1614/WT-D-14-00090.1

[42]   Hager, A.G., Wax, L.M., Bollero, G.A. and Stoller, E.W. (2003) Influence of Diphenyl Ether Herbicide Application Rate and Timing on Common Waterhemp (Amaranthus rudis) Control in Soybean (Glycine max). Weed Technology, 17, 14-20.
https://doi.org/10.1614/0890-037X(2003)017[0014:IODHAR]2.0.CO;2

[43]   Hedges, B.K., Soltani, N., Robinson, D.E., Hooker, D.C. and Sikkema, P.H. (2019) Influence of Glyphosate/Dicamba Application Rate and Timing on the Control of Glyphosate-Resistant Waterhemp in Glyphosate/Dicamba-Resistant Soybean. Canadian Journal of Plant Science, 99, 371-374.
https://doi.org/10.1139/cjps-2018-0101

[44]   Legleiter, T.R. and Bradley, K.W. (2008) Glyphosate and Multiple Herbicide Resistance in Common Waterhemp (Amaranthus rudis) Populations from Missouri. Weed Science, 56, 582-587.
https://doi.org/10.1614/WS-07-204.1

[45]   Chahal, P.S., Aulakh, J.S., Rosenbaum, K. and Jhala, A.J. (2015) Growth Stage Affects Does Response of Selected Glyphosate-Resistant Weeds to Premix of 2,4-D Choline and Glyphosate (Enlist DuoTM Herbicide). The Journal of Agricultural Science, 7, 1-10.
https://doi.org/10.5539/jas.v7n11p1

[46]   Sarangi, D. and Jhala, A.J. (2017) Biologically Effective Rates of a New Premix (Atrazine, Bicyclopyrone, Mesotrione, and S-Metolachlor) for Preemergence or Postemergence Control of Common Waterhemp [Amaranthus tuberculatus (Moq.) Sauer var. rudis] in Corn. Canadian Journal of Plant Science, 97, 1075-1089.
https://doi.org/10.1139/CJPS-2017-0037

[47]   Sarangi, D., Stephens, T., Barker, A.L., Patterson, E.L., Gaines, T.A. and Jhala, A.J. (2019) Protoporphyrinogen Oxidase (PPO) Inhibitor-Resistant Waterhemp (Amaranthus tuberculatus) from Nebraska Is Multiple Herbicide Resistant: Confirmation, Mechanism of Resistance, and Management. Weed Science, 67, 510-520.
https://doi.org/10.1017/wsc.2019.29

[48]   Langdon, N.M., Soltani, N., Raeder, A.J., Hooker, D.C., Robinson, D.E. and Sikkema, P.H. (2020) Influence of Adjuvants on the Control of Glyphosate-Resistant Canada Fleabane and Waterhemp in Corn with Tolpyralate. American Journal of Plant Sciences, 11, 354-371.
https://doi.org/10.4236/ajps.2020.113026

[49]   Heneghan, J. and Johnson, W. (2017) The Growth and Development of Five Waterhemp (Amaranthus tuberculatus) Populations in a Common Garden. Weed Science, 65, 247.
https://doi.org/10.1017/wsc.2016.20

[50]   Rodgers, E.G. (1952) Brittleness and Other Responses of Corn to 2,4-Dichlorophenoxyacetic Acid. Plant Physiology, 27, 153-172.
https://doi.org/10.1104/pp.27.1.153

[51]   Striegel, A., Lawrence, N.C., Knezevic, S.Z., Krumm, J.T., Hein, G. and Jhala, A.J. (2020) Control of Glyphosate/Glufosinate-Resistant Volunteer Corn in Corn Resistant to Aryloxyphenoxyproprionates. Weed Technology, 34, 309-317.
https://doi.org/10.1017/wet.2020.41

 
 
Top