JWARP  Vol.13 No.4 , April 2021
Water Productivity of Poplar and Paulownia on Two Sites in Kyrgyzstan, Central Asia
Abstract: As Central Asia is a region with wide spread water scarcity as a result of excessive irrigation of agriculture, land use changes deserve research about potential impacts on the already strained water resources. Poplars have a long tradition as agroforestry tree across Central Asia, while paulownia is new to the region, but has been gaining extreme attention as a potential plantation and/or agroforestry tree. Therefore, the water productivity of those two tree species is investigated here on 3-year-old trees, in order to provide insights in how far the newly introduced Paulownia could put additional strain on water resources compared to paulownia. Poplar (P. deltoides × nigra) increased the stem biomass by 5.4 kg at an average water consumption of 4.18 l/d (water productivity 6.79 g/l). Paulownia’s (Paulownia tomentosa × fortunei) stem biomass grew by 4.81 kg at 2.36 l/d in average (water productivity 11.9 g/l). Expanding paulownia would not exert more pressure on Central Asia’s water resources than an expansion of poplar.
Cite this paper: Thevs, N. , Baier, C. and Aliev, K. (2021) Water Productivity of Poplar and Paulownia on Two Sites in Kyrgyzstan, Central Asia. Journal of Water Resource and Protection, 13, 293-308. doi: 10.4236/jwarp.2021.134018.

[1]   CACILM and ADB (Central Asian Countries Initiative for Land Management and Asian Development Bank) (2010) Central Asia Atlas of Natural Resources. CACILM and ADB, Manila.

[2]   Reyer, C.P.O., Otto, I.M., Adams, S., Albrecht, T., Baarsch, F., Cartsburg, M., Eden, A., Ludi, E., Marcus, R. and Mengel, M. (2017) Climate Change Impacts in Central Asia and Their Implications for Development. Regional Environmental Change, 17, 1639-1650.

[3]   Thevs, N., Strenge, E., Aliev, K., Eraaliev, M., Lang, P. Baibagysov, A. and Xu, J. (2017) Tree Shelterbelts as an Element to Improve Water Resource Management in Central Asia. Water, 9, 842.

[4]   Thevs, N., Gombert, A.J., Strenge, E., Lleshi, R., Aliev, K. and Emileva, B. (2019) Tree Wind Breaks in Central Asia and Their Effects on Agricultural Water Consumption. Land, 8, 167-183.

[5]   Thevs, N., Aliev, K. and Lleshi, R. (submitted) Water Productivity of Tree Wind Break Agroforestry Systems in Irrigated Agriculture—An Example from Ferghana Valley, Kyrgyzstan. Trees, Forests, and People.

[6]   Undeland, A. and Mitchell, A.M. (2015) Kyrgyz Republic—Communities, Forests, and Pastures.

[7]   UNECE (2019) Forest Landscape Restoration in the Caucasus and Central Asia—Challenges and Opportunities. Background Study for the Ministerial Roundtable on Forest Landscape Restoration in the Caucasus and Central Asia (21-22 June 2018, Astana, Kazakhstan).

[8]   FAO (2020) Global Forest Resources Assessment. Country Reports 2020.

[9]   FRA (2020) Global Forest Resources Assessments. FAO, Rome.

[10]   FAOSTAT (2020).

[11]   Baier, C., Thevs, N., Villwock, D., Emileva, B. and Fischer, S. (submitted) Water Productivity of Paulownia Tomentosa × Fortunei (Shan Tong) in a Plantation at Lake Issyk-Kul, Kyrgyzstan, Central Asia. Trees.

[12]   Chinese Academy of Forestry (1986) Paulownia in China: Cultivation and Utilization. Asian Network for Biological Sciences and International Development Research Centre, Beijing.

[13]   Jiang, Z., Gao, L., Fang, Y. and Sun, X. (1994) Analysis of Paulownia-Intercropping Types and Their Benefits in Woyang County of Anhui Province. Forest Ecology and Management, 67, 329-337.

[14]   Wang, Q. (1990) A Brief Account of Professional Education and Training in Agroforestry in China. Agroforestry Systems, 12, 87-89.

[15]   Wang, Q. and Shogren, J.F. (1992) Characteristics of the Crop-Paulownia System in China. Agriculture, Ecosystems & Environment, 39, 145-152.

[16]   Thevs, N., Fehrenz, S., Aliev, K., Emileva, B., Fazylbekov, R., Kentbaev, Y., Qonunov, Y., Qurbonbekova, Y., Raissova, N., Razhapbaev, M. and Zikirov, S. (submitted) Growth Rates of Poplar Clones across Central Asia. Forests.

[17]   Granier, A. (1985) Une nouvelle méthode pour la mesure du flux de sève brute dans le tronc des arbres. Annales des Sciences forestières EDP Sciences, 42, 193-200.

[18]   Oishi, A., Hawthorne, C., David, A. and Ram, O. (2016) Baseliner. An Open-Source, Interactive Tool for Processing Sap Flux Data from Thermal Dissipation Probes. SoftwareX, 5, 139-143.

[19]   Clearwater, M.J., Meinzer, F.C., Andrade, J.L., Goldstein, G. and Holbrook, N.M. (1999) Potential Errors in Measurement of Nonuniform Sap Flow Using Heat Dissipation Probes. Tree Physiology, 19, 681-687.

[20]   Smith, D.M. and Allen, S.J. (1996) Measurement of Sap Flow in Plant Stems. Journal of Experimental Botany, 47, 1833-1844.

[21]   Zotarelli, L., Dukes, M.D., Romero, C.C., Migliaccio, K.W. and Morgan, K.T. (2010) Step by Step Calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method).

[22]   Strenge, E., Thevs, N., Aliev, K., Eraaliev, M., Lang, P. and Baibagysov, A. (2018) Water Consumption of Populus alba Trees in Tree Shelterbelt Systems in Central Asia. Central Asian Journal for Water Resources, 4, 48-62.

[23]   Kassam, A.H., Molden, D., Fereres, E. and Doorenbos, J. (2007) Water Productivity: Science and Practice—Introduction. Irrigation Science, 25, 185-188.

[24]   Isebrands, J.G. and Richardson, J. (2014) Poplars and Willows. Trees for Society and the Environment. CAB International and FAO, Rome.

[25]   Stanton, B.J., Bourque, A., Coleman, M., Eisenbies, M., Emerson, R.M., Espinoza, J., Gantz, J.C., Himes, A., Rodstrom, A., Shuren, R., Stonex, R., Volk, T. and Zerpa, J. (2020) The Practice and Economics of Hybrid Poplar Biomass Production for Biofuels and Bioproducts in the Pacific Northwest. BioEnergy Research.

[26]   Qiao, C., Sun, R., Xu, Z.W., Zhang, L., Liu, L.Y., Hao, L.Y. and Jiang, G.P. (2015) A Study of Shelterbelt Transpiration and Cropland Evapotranspiration in an Irrigated Area in the Middle Reaches of the Heihe River in Northwestern China. IEEE Geoscience and Remote Sensing Letters, 12, 369-373.

[27]   Chang, X.X., Zhao, W.Z., Zhang, Z.H. and Su, Y.Z. (2006) Sap Flow and Tree Conductance of Shelter-Belt in Arid Region of China. Agricultural and Forest Meteorology, 138, 132-141.

[28]   Hinckley, T.M., Brooks, J.R., Cermak, J., Ceulemans, R., Kucera, J., Meinzer, F.C. and Roberts, D.A. (1994) Water Flux in a Hybrid Poplar Stand. Tree Physiology, 14, 1005-1018.

[29]   Stimm, B., Stiegler, J., Genser, C., Wittkopf, S. and Mosandl, R. (2013) Paulownia-Hoffnungstrager aus Fernost? Eine schnellwachsende Baumart aus China in Bayern auf dem Prüfstand. Gastbaumarten im Klimawandel, 18-21.

[30]   Villwock, D. (2019) Water Productivity of Poplar and Paulownia as Fast-Growing Trees in Central Asia. Master Thesis, University of Hohenheim, Stuttgart.

[31]   Steppe, K., De Pauw, D.J.W., Doody, T.M. and Teskey, R.O. (2010) A Comparison of Sap Flux Density Using Thermal Dissipation, Heat Pulse Velocity and Heat Field Deformation Methods. Agricultural and Forest Meteorology, 150, 1046-1056.

[32]   Fuchs, S., Leuschner, C., Link, R., Coners, H. and Schuldt, B. (2017) Calibration and Comparison of Thermal Dissipation, Heat Ratio and Heat Field Deformation Sap Flow Probes for Diffuse-Porous Trees. Agricultural and Forest Meteorology, 244-245, 151-161.

[33]   Bush, S.E., Hultine, K.R., Sperry, S.J. and Ehleringer, J.R. (2010) Calibration of Thermal Dissipation Sap Flow Probes for Ring- and Diffuse-Porous Trees. Tree Physiology, 30, 1545-1554.

[34]   Flo, V., Martinez-Vilaltaa, J. Steppe, K., Schuldt, B. and Poyatosa, R. (2019) A Synthesis of Bias and Uncertainty in Sap Flow Methods. Agricultural and Forest Meteorology, 271, 362-374.

[35]   Paris, P., Di Matteo, G., Tarchi, M., Tosi, L., Spaccino, L. and Lauteri, M. (2018) Precision Subsurface Drip Irrigation Increases Yield While Sustaining Water Use Efficiency in Mediterranean Poplar Bioenergy Plantations. Forest Ecology and Management, 409, 749-756.

[36]   Delzon, S. and Loustau, D. (2005) Age-Related Decline in Stand Water Use: Sap Flow and Transpiration in a Pine Forest Chronosequence. Agricultural and Forest Meteorology, 129, 105-119.