A Multi-Criteria Decision Making for the Unrelated Parallel Machines Scheduling Problem

References

[1] L. Yu, H. M. Shih, M. Pfund, W. M. Carlyle, and J. W. Fowler, “Scheduling of unrelated parallel machines-An application to PWB manufacturing,” IIE Transactions, Vol. 34, No. 11, pp. 921–931, 2004.

[2]
M. K. Richard, “Reducibility among combinatorial prob-lems,” in R. E. Miller and J. W. Thatcher (editors): Com-plexity of Computer Computations, pp. 85–103, Plenum, New York, 1972.

[3]
M. Pfund, J. W. Fowler, and J.N.D. Gupta, “A survey of algorithms for single and multi-objective unrelated paral-lel-machine deterministic scheduling problems,” Journal of the Chinese Institute of Industrial Engineers, Vol. 21, No. 3, pp. 230–241, 2004.

[4]
R. Logendran, B. McDonell, and B. Smucker, “Schedul-ing unrelated parallel machines with sequence-dependent setups,” Computers and Operations Research, Vol. 34, No. 11, pp. 3420–3438, 2007.

[5]
M. A. Hariri and C. N. Potts, “Heuristics for sched uling unrelated parallel machines,” Computers and Operations Research, Vol. 18, No. 3, pp. 323–331, 1991.

[6]
M. Weng, J. Lu, and H. Ren, “Unrelated parallel machine scheduling with setup consideration and a total weighted completion time objective,” International Journal of Pro-duction Economics, Vol. 70, pp. 215–226, 2001.

[7]
J. Bank and F. Werner, “Heuristic algorithms for unre-lated parallel machine scheduling with a common due date, release dates, and linear earliness and tardiness pen-alties,” Mathematical and Computer Modelling, Vol. 33, pp. 363–383, 2001.

[8]
A. Glass, C. N. Potts, and P. Shade, “Unrelated parallel machine scheduling using local search,” Mathematical and Computer Modeling, Vol. 20, No. 2, pp. 41–52, 1994.

[9]
B. Srivastava, “An effective heuristic for minimizing make- span on unrelated parallel machines,” Journal of the Operational Research Society, Vol. 49, pp. 886–894, 1997.

[10]
W. Kim, K. H. Kim, W. Jang, and F. F. Chen, “Unrelated parallel machine scheduling with setup times using simu-lated annealing,” Robotics and Computer Integrated Manufacturing, Vol. 18, No. 3-4, pp. 223–231, 2002.

[11]
W. Kim, D. G. Na, and F. F. Chen, “Unrelated parallel machine scheduling with setup times and total weighted tardiness objective,” Robotics and Computer Integrated Manufacturing, Vol. 19, No.1-2, pp. 173–181, 2003.

[12]
R. Logendran and F. Subur, “Unrelated parallel machine scheduling with job splitting,” IIE Transactions, Vol. 36, No. 4, pp. 359–72, 2004.

[13]
J. F. Chen and T. H. Wu, “Total tardiness minimization on unrelated parallel machine scheduling with auxiliary equipment constraints,” Omega-International Journal of Management Science, Vol. 34, pp. 81–89, 2006.

[14]
J. F. Chen, “Minimization of maximum tardiness on un-related parallel machines with process restrictions and setups,” International Journal of Advanced Manufacturing Technology, Vol. 29, No. 5, pp. 557–563, 2006.

[15]
S. Martello, F. Soumis, and P. Toth, “Exact and approxi-mation algorithms for makespan minimization on unre-lated parallel machines,” Discrete Applied Mathematics, Vol. 75, pp. 169–188, 1997.

[16]
Lancia, “Scheduling jobs with release dates and tails on two unrelated parallel machines to minimize the make- span,” European Journal of Operational Research, Vol. 120, pp. 277–288, 2000.

[17]
C. F. Liaw, Y. K. Lin, C. Y. Cheng, and M. Chen, “Scheduling unrelated parallel machines to minimize total weighted tardiness,” Computers and Operations Research, Vol. 30, pp. 1777–1789, 2003.

[18]
P. L. Rocha, M. G. Ravetti, G. R. Mateus, and P. M. Par-dalos, “Exact algorithms for a scheduling problem with unrelated parallel machines and sequence and ma-chine-dependent setup times,” Computers and Operations Research, Vol. 35, No. 4, pp. 1250–1264, 2008.

[19]
V. Suresh and D. Chaudhuri, “Bicriteria scheduling prob-lem for unrelated parallel-machines,” Computers and In-dustrial Engineering, Vol. 30, pp. 77–82, 1996.

[20]
K. Jansen and L. Porkolab, “Improved approximation schemes for scheduling unrelated parallel-machines,” ACM Symposium on Theory of Computing, pp. 408–417, 1999.

[21]
S. Kirkpatrick, Jr. C. D. Gelatt, and M. P. Vecchi, “Opti-mization by simulated annealing,” Science, Vol. 220, pp. 671–680, 1983.

[22]
N. E. Collins, R. W. Eglese, and B. L. Golden, “Simulated annealing—an annotated bibliography,” American Journal of Mathematical and Management Sciences, Vol. 8, pp. 209–307, 1988.

[23]
R. B. Rutenbar, “Simulated annealing algorithms: An overview,” IEEE Circuits and Devices Magazine (Janu-ary), pp. 19–26, 1989.

[24]
R. W. Eglese, “Simulated annealing: A tool for opera-tional research,” European Journal of Operational Re-search Vol. 46, No. 3, pp. 271–281, 1990.

[25]
B. Suman and P. Kumar, “A survey of simulated anneal-ing as a tool for single and multiobjective optimization,” Journal of the Operational Research Society, Vol. 57, No. 10, pp. 1143–1160, 2006.

[26]
R. T. Clemen and T. Reilly, “Making hard decisions,” Duxbury, Toronto, 2001.

[27]
P. Andersen and N. C. Petersen, “A procedure for ranking efficient units in data envelopment analysis,” Manage-ment Science, Vol. 39, pp. 1261–1264, 1993.

[28]
D. Slottje, G. W. Scully, J. G. Hirschberg, and K. J. Hayes, “Measuring the quality of life across countries: A multi-dimensional analysis,” Westview Press, Boulder, CO, 1991.

[29]
M. Pinedo, “Scheduling theory: Algorithms and systems,” Prentice-Hall, Inc., A Simon & Schuster Company Engle-wood Cliffs, New Jersey, pp. 10, 1995.

[30]
A. Charnes, W. W. Cooper, and E. Rhodes, “Measuring the efficiency of decision making units,” European Jour-nal of Operational Research, Vol. 2, pp. 429–444, 1978.