[1] An, H., & Searcy, S. W. (2012). Searcy Economic and Energy Evaluation of a Logistics System Based on Biomass Modules. Biomass and Bioenergy, 46, 190-202.
https://doi.org/10.1016/j.biombioe.2012.09.002
[2] Faaij, A., Wagener, M., Junginger, M., van Weereld, A., Schouwenberg, P., Kwant, K. et al. (2006) Opportunities and Barriers for Sustainable International Bio-Energy Trade: Towards a Strategic Advice of IEA Task 40. In 14th European Biomass Conference, 17-21 October, Paris, France.
[3] Greene, D. L., & Tishchishyna, N. I. (2000). Costs of Oil Dependence: ORNL/TM-2000/152. Oak Ridge, TN: Oak Ridge National Laboratory.
[4] Hall, D. O., & Scrase, J. I. (1998). Will Biomass Be the Environmentally Friendly Fuel of the Future? Biomass and Bioenergy, 15, 357-367.
https://doi.org/10.1016/S0961-9534(98)00030-0
[5] Hall, D. O., Rosillo-Calle, F., Williams, R. H., & Woods, J. (1993). Biomass for Energy: Supply Prospects. In B. J. Johansson, H. Kelly, A. K. N. Reddy, & R. H. Williams (Eds.), Renewable Energy: Sources for Fuels and Electricity (pp. 583-652). Washington DC: Island Press.
[6] Heinimö, J. (2008). Methodological Aspects on International Biofuels Trade: International Streams and Trade of Solid and Liquid Biofuels in Finland. Biomass and Bioenergy, 32, 702-716.
https://doi.org/10.1016/j.biombioe.2008.01.003
[7] Hubbard, H. (1991). The Real Cost of Energy. Scientific American, 264, 36-42.
https://doi.org/10.1038/scientificamerican0491-36
[8] Klass, L. D. (1998). Energy Consumption, Reserves, Depletion, and Environmental Issues. In D. L. Klass (Ed.), Biomass for Renewable Energy, Fuels, and Chemicals (pp. 1-27). New York, NY: Academic Press.
[9] Kulkarni, M. G., & Dalai, A. K. (2006). Waste Cooking Oil—An Economical Source for Biodiesel: A Review. Industrial & Engineering Chemistry Research, 45, 2901-2913.
https://doi.org/10.1021/ie0510526
[10] LaTourrette, T., Ortiz, D. S, Hlavka, E., Burger, H., & Cecchine, G. (2011). Supplying Biomass to Power Plants: A Model of the Costs of Utilizing Agricultural Biomass in Cofired Power Plants. Pittsburgh, PA, Morgantown, WV, and Albany, OR: National Energy Technology Laboratory.
https://doi.org/10.2172/1515273
[11] Macedo, I. D. C. (1998). Energy from Biomass and Wastes. Biomass & Bioenergy, 3, 77-80.
[12] McLaughlin, S. B., Samson, R., Bransby, D., & Wiselogel, A. (1996) Evaluating Physical, Chemical, and Energetic Properties of Perennial Grasses as Biofuels. 7th National Bioenergy Conference, Nashville, 15-20 September 1996.
https://doi.org/10.1016/s0140-6701(98)96595-x
[13] Sharif, A. B. M. H., Nasrulhaq, A. B., Majid, H. A. M., Chandran, S., & Zuliana, R. (2007). Biodiesel Production from Waste Cooking Oil as Environmental Benefits and Recycling Process. A Review. Asia Biofuel Conference Book, Singapore, 11-13 December 2007.
[14] Sharif, H., Aishah, S., Boyce, A., Chowdhury, P., & Naqiuddin, M. (2008). Biodiesel Fuel Production from Algae as Renewable Energy A.B.M. American Journal of Biochemistry and Biotechnology, 4, 250-254.
[15] Tracking SDF 7, The Energy Progress Report (2020). International Bank for Reconstruction and Development. Washington DC: The World Bank.
https://unstats.un.org/unsd/energystats/pubs/documents/sdg_7_2020.pdf
[16] Turkenburg, W. C. (2000). Renewable Energy Technologies. In J. Goldemberg (Ed.), World Energy Assessment, Preface (pp. 219-272). New York, NY: United Nations Development Programme.
[17] Van Dama, J., Faaija, A. P. C., Lewandowskia, I., & Fischerb, G. (2007). Biomass Production Potentials in Central and Eastern Europe under Different Scenarios. Biomass and Bioenergy, 31, 345-366.
https://doi.org/10.1016/j.biombioe.2006.10.001