Back
 AJCC  Vol.10 No.1 , March 2021
Significant Shift of Ambient Night-Time Air Temperature during Rice Growing Season in Major US Rice States
Abstract: Heat stress studies in rice (Oryza sativa sp.) under extreme weather scenarios generally use constant temperatures to influence the crop responses without relation to actual weather changes. These heat stress studies may have limited implications for future crop yields because elevated temperatures are not based on local temperature fluctuations. This study investigated the night-time air temperature pattern and assessed the status and reliability of available weather station data in four major rice growing states; Arkansas (AR), California (CA), Louisiana (LA) and Texas (TX) using four public weather station databases. Hourly and daily night-time air temperatures from 20:00 to 06:00 were obtained from 1940 to 2018 during the rice growing period. During the 67-year period, a significant increase of 1.12°C and 0.53°C in seasonal night air temperature occurred in CA and AR (P ≤ 0.001) while LA and TX showed minimal to no increase in night air temperature. Across all rice states and years, night air temperature fluctuations ranged between ±0.2°C and ±4°C with the greatest occurred in CA (2.9°C) and AR (4.5°C). Mean night-time air temperature across all states ranged from 22.6°C to 29.5°C with a rate of increase of 0.01°C to 0.02°C per year since 1941. Due to a relatively smaller spatial dataset (from 1941-2018), trend analyses for AR, TX and LA showed modest bias with root mean square errors (RMSE) of 0.5°C to 1.1°C of absolute mean temperature across all locations. Results in this study showed seasonal night-time air temperature change occurred in some major US rice producing states during the last 67-years. This study highlights the need for more weather stations near agricultural farms to reliably derive actual temperature patterns in the rice growing regions.
Cite this paper: Mendez, K. , Adviento-Borbe, M. , Lorence, A. and Walia, H. (2021) Significant Shift of Ambient Night-Time Air Temperature during Rice Growing Season in Major US Rice States. American Journal of Climate Change, 10, 134-151. doi: 10.4236/ajcc.2021.101006.
References

[1]   Bahuguna, R. N., Solis, C. A., Shi, W., & Jagadish, S. V. K. (2017). Post-Flowering Night Respiration and Altered Sink Activity Account for High Night Temperature Induced Grain Yield and Quality Loss in Rice (Oryza sativa L.). Physiologia Plantarum, 159, 59-73.
https://doi.org/10.1111/ppl.12485

[2]   Batres-Marquez, P. S., Jensen, H. H., & Upton, J. (2009). Rice Consumption in the United States: Recent Evidence from Food Consumption Surveys. Journal of the American Dietetic Association, 109, 1719-1727.
https://doi.org/10.1016/j.jada.2009.07.010

[3]   California Irrigation Management Information System, CIMIS (2020). CIMIS Publications.
https://cimis.water.ca.gov/WSNReportCriteria.aspx

[4]   Childs, N. (2019). Rice Outlook, RCS-19K. Washington DC: U.S. Department of Agriculture, Economic Research Service.
https://www.ers.usda.gov/publications/pub-details/?pubid=95348

[5]   Coast, O., Sebela, D., Quiñones, C., & Jagadish, S. V. K. (2019). Systematic Determination of the Reproductive Growth Stage Most Sensitive to High Night Temperature Stress in Rice (Oryza sativa). Crop Science, 60, 391-403.
https://doi.org/10.1002/csc2.20086

[6]   Cooper, N. T. W., Siebenmorgen, T. J., & Counce, P. A. (2008). Effects of Nighttime Temperature during Kernel Development on Rice Physicochemical Properties. Cereal Chemistry, 85, 276-282.
https://doi.org/10.1094/CCHEM-85-3-0276

[7]   Counce, P. A., Keisling, T. C., & Mitchell, A. J. (2000). A Uniform, Objective, and Adaptive System for Expressing Rice Development. Crop Science, 40, 436-443.
https://doi.org/10.2135/cropsci2000.402436x

[8]   Donat, M. G., Alexander, L. V., Yang, H., Durre, I., Vose, R., Dunn, R. J. H., Willett, K. M., Aguilar, E., Brunet, M., Caesar, J., Hewitson, B., Jack, C., Klein, Tank, A. M. G., Kruger, A. C., Marengo, J., Peterson, T. C., Renom, M., Oria Rojas, C., Rusticucci, M., Salinger, J., Elrayah, A. S., Sekele, S. S., Srivastava, A. K., Trewin, B., Villaroel, C., Vincent, L. A., Zhai, P., Zhang, X., & Kitching, S. (2013). Updated Analyses of Temperature and Precipitation Extreme Indices since the Beginning of the Twentieth Century: The HadEX2 Dataset. Journal of Geophysical Research: Atmospheres, 118, 2098-2118.
https://doi.org/10.1002/jgrd.50150

[9]   Easterling, D. R., Horton, B., Jones, P. D., Peterson, T. C., Karl, T. R., Parker, D. E., Salinger, J. M., Razuvayev, V., Plummer, N., Jamason, P., & Folland, C. K. (1997). Maxium and Minimum Temperature Trends for the Globe. Science, 277, 364-367.
https://doi.org/10.1126/science.277.5324.364

[10]   Foley, J. A., Defries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Stuart Chaplin, F., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, H., Holloway, T., Howard, E. A., Kucharik, C. J., Monfreda, C., Patz, J. A., Prentice, C., Ramankutty, N., & Synder, P. K. (2005). Global Consequences of Land Use. Science, 309, 570-574.
https://doi.org/10.1126/science.1111772

[11]   Food and Agriculture Organization Corporate Statistical Database, FAOSTAT (2015). Production Quantities by Country.
http://faostat3.fao.org

[12]   Grassini, P., Eskridge, K. M., & Cassman, K. G. (2013). Distinguishing between Yield Advances and Yield Plateaus in Historical Crop Production Trends. Nature Communications, 4, 2918.
https://doi.org/10.1038/ncomms3918

[13]   Hansen, J., Ruedy, R., Sato, M., & Lo, K. (2010). Global Surface Temperature Change. American Geophysical Union Journal, 48, RG4004.
https://doi.org/10.1029/2010RG000345

[14]   Intergovernmental Panel on Climate Change, IPCC (2014). Climate Change 2014: Synthesis Report. In R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (151 p.). Geneva, Switzerland: IPCC.

[15]   Intergovernmental Panel on Climate Change, IPCC (2018). Annex IV: Expert Reviewers of the IPCC Special Report on Global Warming of 1.5 °C. In V. Masson-Delmotte, P. Zhai, H.-O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty (51 p.). Geneva, Switzerland: World Meteorological Organization.

[16]   Kanno, K., & Makino, A. (2010). Increased Grain Yield and Biomass Allocation in Rice under Cool Night Temperature. Journal of Soil Science and Plant Nutrition, 56, 412-417.
https://doi.org/10.1111/j.1747-0765.2010.00473.x

[17]   Lanning, S. B., Siebenmorgen, T. J., Counce, P. A., Ambardekar, A. A., & Mauromoustakos, A. (2011). Extreme Nighttime Air Temperatures in 2010 Impact Rice Chalkiness and Milling Quality. Field Crops Research, 124, 132-136.
https://doi.org/10.1016/j.fcr.2011.06.012

[18]   Lobell, D. B., & Ortiz-Monasterio, J. I. (2007). Impacts of Day versus Night Temperatures on Spring Wheat Yields: A Comparison of Empirical and CERES Model Predictions in Three Locations. Agronomy Journal, 99, 469-477.
https://doi:10.2134/agronj2006.0209

[19]   Lobell, D. B., Schlenker, W., & Costa-Roberts, J. (2011). Climate Trends and Global Crop Production since 1980. Science, 333, 616-620.
https://doi.org/10.1126/science.1204531

[20]   McBride, W. D., Skorbiansky, S. R., & Childs, N. (2018). U.S. Rice Production in the New Millenium: Changes in Structure, Practices, and Costs. Economic Information Bulletin Number 202. USDA Economic Research Service.
https://doi.org/10.2139/ssrn.3304604

[21]   Mohammed, A. R., & Tarpley, L. (2009a). High Nighttime Temperatures Affect Rice Productivity through Altered Pollen Germination and Spikelet Fertility. Agricultural and Forest Meteorology, 149, 999-1008.
https://doi.org/10.1016/j.agrformet.2008.12.003

[22]   Mohammed, A. R., & Tarpley, L. (2009b). Impact of High Nighttime Temperature on Respiration, Membrane Stability, Antioxidant Capacity, and Yield of Rice Plants. Crop Science, 49, 313-322.
https://doi.org/10.2135/cropsci2008.03.0161

[23]   Mohammed, A. R., & Tarpley, L. (2010). Effects of High Night Temperature and Spikelet Position on Yield-Related Parameters of Rice (Oryza sativa L.) Plants. European Journal of Agronomy, 33, 117-123.
https://doi.org/10.1016/j.eja.2009.11.006

[24]   Morell, F. J., Yang, H. S., Cassman, K. G., van Wart, J., Elmore, R. W., Licht, M., Coulter, J. A., Ciampitti, I. A., Pittelkow, C. M., Brouder, S. M., Thomison, P., Lauer, J., Graham, C., Massey, R., & Grassini, P. (2016). Can Crop Simulation Models Be Used to Predict Local to Regional Maize Yields and Total Production in the U.S. Corn Belt? Field Crops Research, 192, 1-12.
https://doi.org/10.1016/j.fcr.2016.04.004

[25]   Morita, S., Yonemaru, J., & Takanashi, J. (2005). Grain Growth and Endosperm Cell Size under High Night Temperatures in Rice (Oryza sativa L.). Annals of Botany, 95, 695-701.
https://doi.org/10.1093/aob/mci071

[26]   Mourtzinis, S., Rarralino Edreira, J. I., Conley, S. P., & Grassini, P. (2017). From Grid to Field: Assessing Quality of Gridded Weather Data for Agricultural Applications. European Journal of Agronomy, 82, 163-172.
https://doi.org/10.1016/j.eja.2016.10.013

[27]   National Climatic Data Center, NCDC (2011). Global Historical Climatology Network-Daily. Asheville, NC: National Oceanic and Aerospace Administration-National Climatic Data Center (NOAA-NCDC).
https://www.ncdc.noaa.gov/cdo-web/

[28]   Pathak, H., Ladha, J. K., Aggarwal, P. K., Peng, S., Das, S., Singh, Y., Singh, B. S., Kamra, S. K., Mishra, B., Sastri, A. S. R. A. S., Aggarwal, H. P., Das, D. K., & Gupta, R. K. (2003). Trends of Climatic Potential and On-Farm Yields of Rice and Wheat in the Indo-Gangetic Plains. Field Crops Research, 80, 223-234.
https://doi.org/10.1016/S0378-4290(02)00194-6

[29]   Peng, S., Huang, J. J., Sheehy, E., Laza, R. C., Visperas, R. M., Zhong, X. G., Centeno, S., Khush, G. S., & Cassman, K. G. (2004). Rice Yields Decline with Higher Night Temperature from Global Warming. PNAS, 101, 9971-9975.
https://doi.org/10.1073/pnas.0403720101

[30]   Ray, D. K., Gerber, J. S., MacDonald, K., & West, P. C. (2015). Climate Variation Explains a Third of Global Crop Yield Variability. Nature Communications, 6, 5989.
https://doi.org/10.1038/ncomms6989

[31]   Rosenzweig, C., & Parry, M. L. (1994). Potential Impact of Climate Change on World Food Supply. Nature, 367, 133-138.
https://doi.org/10.1038/367133a0

[32]   Schiermeier, Q. (2008). Climate Anomaly Is an Artefact. Nature, 453, 569.
https://www.nature.com/news/2008/080528/full/453569a.html
https://doi.org/10.1038/453569a


[33]   SYSTAT (2013). SYSTAT Software Inc. Ver. 13 Manual. San Jose, CA: SYSTAT.

[34]   Tamaki, M., Ebata, M., Tashiro, T., & Ishikawa, M. (1989). Physio-Ecological Studies on Quality Formation of Rice Kernel. Japanese Journal of Crop Science, 58, 695-703.
https://doi.org/10.1626/jcs.58.695

[35]   United States Census Bureau, US Census (2011). Population of States and Counties of the United States. Washington DC: US Census Bureau.

[36]   United States Department of Agriculture, USDA (2018a). Grain: World Markets and Trade.
https://apps.fas.usda.gov/psdonline/circulars/grain.pdf

[37]   United States Department of Agriculture, USDA (2018b). Rice Yearbook.
https://www.ers.usda.gov/data-products/rice-yearbook/rice-yearbook

[38]   United States Department of Agriculture-National Agricultural Statistics Service, USDA-NASS (2018c). Rice Planted Area. Acres (000) and Change from Previous Year.
https://www.nass.usda.gov/Charts_and_Maps/graphics/riceacm.pdf

[39]   United States Department of Agriculture-National Agricultural Statistics Service, USDA-NASS (2016). Rice.
https://www.nass.usda.gov/Statistics_by_Subject/index.php?sector=CROPS

[40]   Van Wart, J., Grassini, P., & Cassmann, K. G. (2013). Impact of Derived Global Weather Data on Simulated Crop Yields. Global Change Biology, 19, 3822-3834.
https://doi.org/10.1111/gcb.12302

[41]   Wang, H., Schubert, S., Suarez, M., Chen, J., Hoerling, M., Kumar, A., & Pegion, P. (2009). Attribution of the Seasonality and Regionality in Climate Trends over the United States during 1950-2000. Journal of Climate, 22, 2571-2590.
https://doi.org/10.1175/2008JCLI2359.1

[42]   Wheeler, T. R., Craufurd, P. Q., Ellis, R. H., Porter, J. R., & Vara Prasad, P. V. (2000). Temperature Variability and the Yield of Annual Crops. Agriculture, Ecosystems & Environment, 82, 159-167.
https://doi.org/10.1016/S0167-8809(00)00224-3

[43]   Yang, Y., Wilson, L. T., & Wang, J. (2010). Development of an Automated Climatic Data Scraping, Filtering and Display System. Computers and Electronics in Agriculture, 71, 77-87.
https://doi.org/10.1016/j.compag.2009.12.006

[44]   Zhang, Y., Tang, Q., Peng, S., Zou, Y., Chen, S., Shi, W., Qin, J., & Laza, M. R. C. (2013). Effects of High Night Temperature on Yield and Agronomic Traits of Irrigated Rice under Field Chamber System Condition. Australian Journal of Crop Science, 7, 7-13.

 
 
Top