Back
 AS  Vol.12 No.3 , March 2021
Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina
Abstract: Nowadays more than 70% of the fresh water available worldwide is used for agriculture. In Argentina, extensive crops are not usually irrigated, so the cropping production depends mostly on rainfall water. In order to know how many liters of water are needed to produce a ton of soybeans, wheat and maize in the Pergamino district, Province of Buenos Aires, its Water Footprint was estimated by the Hoekstra method. Evaporation and rainfall data was obtained from SIGA INTA platform and production data was obtained from the Ministry of Agriculture. The results indicated that the average annual total water footprint values for soybean, corn and wheat crops for the period 2013-2018 in the Pergamino district, province of Buenos Aires, are 1,388 l∙kg−1, 693 l∙kg−1 and 1,249 l∙kg−1 respectively. These were lower than the global average reference values. The obtained results allowed future analysis advancing in the knowledge of the use of water productivity in grain production.
Cite this paper: Tozzini, L. , Pannunzio, A. and Soria, P. (2021) Water Footprint of Soybean, Maize and Wheat in Pergamino, Argentina. Agricultural Sciences, 12, 305-323. doi: 10.4236/as.2021.123020.
References

[1]   Postel, S.L. (2000) Entering an Era of Water Scarcity: The Challenge Ahead. Ecological Applications, 10, 941-948.
https://doi.org/10.1890/1051-0761(2000)010[0941:EAEOWS]2.0.CO;2

[2]   Gerbens-Leenes, W., et al. (2009) The Water Footprint of Bioenergy. PNAS, 106, 10219-10223.
https://doi.org/10.1073/pnas.0812619106

[3]   Hoekstra, A.Y., et al. (2008) Globalization of Water Sharing the Planet’s Freshwater Recourses. Blackwell, Oxford.

[4]   Mekonnen, M., et al. (2014) Water Footprint Benchmarks for Crop Production: A First Global Assessment. Ecological Indicators, 46, 214-223.
https://doi.org/10.1016/j.ecolind.2014.06.013

[5]   Hoekstra, et al. (2011) The Water Footprint Assessment Manual: Setting the Global Standard. Earthscan, London.

[6]   Ministerio de agricultura, ganadería y pesca de la republica Argentina (2018) Censo nacional agropecuario.
https://www.indec.gob.ar/ftp/cuadros/economia/cna2018_resultados_preliminares.pdf

[7]   FAO (2015) Estudio del potencial de la ampliación del riego en Argentina. Organización de las Naciones Unidas para la Alimentación y la Agricultura; Ministerio de Agricultura, Ganadería y Pesca de Argentina. Buenos Aires, Argentina.

[8]   Hoekstra, A.Y. and Chapagain, A.K. (2006) Water Footprints of Nations: Water Use by People as a Function of Their Consumption Pattern. In: Integrated Assessment of Water Resources and Global Change, Springer, Dordrecht, 35-48.
https://doi.org/10.1007/978-1-4020-5591-1_3

[9]   Municipalidad de Pergamino (2015) Información pública.
http://www.pergamino.gob.ar

[10]   Portela, S., Andriulo, A., Sasal, M.C., Mary, B. and Jobbgy, E. (2006) Fertilizer vs. Organic Matter Contribution to Nitrogen Leaching in Cropping Systems of the Pampas: 15N Applications in Field Lysimiters. Plant and Soil, 289, 265-277.
https://doi.org/10.1007/s11104-006-9134-z

[11]   Uriburú Quirno, M., Damiano, F., Borus, J., Lozza, H. and Villareal, J. (2010) Modelacion hidrologica en modo actualizado del Arroyo Pergamino. Congreso Internacional de Hidrologia de Llanuras, Azul, 21-24 September 2010, 8 p.

[12]   Centro de estudios Sociales y ambientales (2004) Estudio de Caso: Pergamino. Informe Final IAI-ENSO Argentina. Cap. IV, 35 p.

[13]   Puentes, M.I. and Casas, R. (2009) Regionalización de los suelos de la Provincia de Buenos Aires. limitaciones a la productividad agropecuaria. Informe sobre desarrollo humano en la provincia de Buenos Aires 2008-2009. EUDEBA, Buenos Aires, 121-147.

[14]   Mekonnen, M.M. and Hoekstra, A. (2011) The Green, Blue and Grey Water Footprint of Crops and Derived Crop Products. Hydrology and Earth System Sciences Discussions, 8, 763-809.
https://doi.org/10.5194/hessd-8-763-2011

[15]   Dastane (1974) Precipitación efectiva en la agricultura de regadío. Ed. FAO, Roma.

[16]   Mekonnen, M.M. and Hoekstra, A.Y. (2011) National Water Footprint Accounts: The Green, Blue and Grey Water Footprint of Production and Consumption. Value of Water. Research Report Series (50).
https://doi.org/10.5194/hessd-8-763-2011

[17]   Bolsa de cereales (2018) Informes publicados.
http://www.bolsadecereales.com/descargar-documento2-196/retaa-84372a6c91d53035d6
12d39c124bb7fb


[18]   Código Alimentario Argentino (2012) Capítulo XII: Bebidas hídricas, agua y agua gasificada. Ley 18.284. Argentina.
http://www.anmat.gov.ar/alimentos/códigoa/CAPITULO_XII.pdf

[19]   ACUMAR (2020) Indicadores.
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact
=8&ved=2ahUKEwiEzfahxbjvAhXbK7kGHZHVDsQQFjACegQIAxAD&url=https%
3A%2F%2Fwww.acumar.gob.ar%2Fwp-content%2Fuploads%2F2016%2F12%2F24.
-2020-04-ANEXO.pdf&usg=AOvVaw3ksu0AIKDAmek96Zj-IRP8


[20]   Zhuo, L., Mekonnen, M.M. and Hoekstra, A.Y. (2014) Sensitivity and Uncertainty in Crop Water Footprint Accounting: A Case Study for the Yellow River Basin. Hydrology and Earth System Sciences, 18, 2219-2234.
https://doi.org/10.5194/hess-18-2219-2014

[21]   Tuninetti, M., Tamea, S., D’Odorico, P., Laio, F. and Ridolfi, L. (2015) Global Sensitivity of High-Resolution Estimates of Crop Water Footprint. Water Resources Research, 51, 8257-8272.
https://doi.org/10.1002/2015WR017148

[22]   Hoekstra, A.Y., et al. (2008) Globalization of Water Sharing the Planet’s Freshwater Recourses. Blackwell, Oxford.

[23]   Doorenbos, J. and Kassam, A.H. (1979) Respuesta del rendimiento de los cultivos al agua. Estudios FAO Riego y Drenaje No 33, Roma.

[24]   Monfreda, C., Ramankutty, N. and Foley, J.A. (2008) Farming the Planet: 2. Geographic Distribution of Crop Areas, Yields, Physiological Types, and Net Primary Production in the Year 2000. Global Biogeochemical Cycles, 22, GB1022.
https://doi.org/10.1029/2007GB002947

[25]   Portmann, F.T., Siebert, S. and Doll, P. (2009) Mirca2000—Global Monthly Irrigated and Rainfed Crop Areas around the Year 2000: A New High-Resolution Data Set for Agricultural and Hydrological Modelling. Global Biogeochemical Cycles, 24, GB1011.
https://doi.org/10.1029/2008GB003435

[26]   Reynolds, C.A., Yitayew, M., Slack, D.C., Hutchinson, C.F., Huete, A. and Petersen, M.S. (2000) Estimating Crop Yields and Production by Integrating the FAO Crop Specific Water Balance Model with Real-Time Satellite Data and Ground-Based Ancillary Data. International Journal of Remote Sensing, 21, 3487-3508.
https://doi.org/10.1080/014311600750037516

[27]   FAOSTAT On-Line Database (2008) Food and Agriculture Organization, Rome.
http://faostat.fao.org

[28]   Sun, S.K., Wu, P.T., Wang, Y.B. and Zhao, X.N. (2013) Temporal Variability of Water Footprint for Maize Production: The Case of Beijing from 1978 to 2008. Water Resources Management, 27, 2447-2463.
https://doi.org/10.1007/s11269-013-0296-1

[29]   Mekonnen, M.M. and Hoekstra, A.Y. (2020) Sustainability of the Blue Water Footprint of Crops. Advances in Water Resources, 143, Article ID: 103679.
https://doi.org/10.1016/j.advwatres.2020.103679

[30]   Rockstrom, J. and Barron, J. (2007) Water Productivity in Rainfed Systems: Overview of Challenges and Analysis of Opportunities in Water Scarcity Prone Savannahs. Irrigation Science, 25, 299-311.
https://doi.org/10.1007/s00271-007-0062-3

[31]   Fernandez, P. (2014) Water Consumptions in Different Crop Sequences in the Pampean Region to Analyse the Possibilities to Integrate More Maize in Crop Rotation to Produce Biofuels. Facultad de Agronomía. UBA, Buenos Aires.

[32]   Alvarez, A., et al. (2016) Green and Blue Water Footprint of Corn (Zea mayz) Production in Central and Northeastern Provinces of Argentina. Rev. Fca Uncuyo, 48, 161-177.

 
 
Top