Back
 JEAS  Vol.11 No.1 , March 2021
Activated Carbon Based on Acacia Wood (Auriculeaformis, C&ocircte d’Ivoire) and Application to the Environment through the Elimination of Pb2+ Ions in Industrial Effluents
Abstract: The objective of this study is to develop carbon, that of Acacia auriculeaformis through its activation in order to eliminate lead in an aqueous medium. A series of activated carbon has been prepared by chemical activation with phosphoric acid, sodium hydroxide and sodium chloride. The determination of the physico-chemical properties of the prepared carbon guided the choice of phosphoric acid activated carbon as the best adsorbent for the elimination of lead(II) in an aqueous solution. Pb2+ adsorption tests in batch mode have shown that the adsorption capacity is influenced by various parameters such as mass, pH, concentration of Pb2+ ions and contact time linked to the medium and the adsorbent. Adsorption isotherms, kinetic models and thermodynamics have been used to describe the adsorption process. The equilibrium data for activated charcoal correspond well to the model of Freundlich, Langmuir, Temkin and Kiselev. The kinetic adsorption data proved to be better described by the pseudo-second order model with external and intraparticle diffusion which are two decisive steps in the adsorption process of Pb2+ ions. Thermodynamics and adsorption isotherms predict a spontaneous exothermic surface reaction, of the chemisorption type, with ion retention in orderly monolayers on the heterogeneous surface of the adsorbent. Tests carried out with this adsorbent material have contributed to the elimination of the Pb2+ ions contained in an industrial effluent with a reduction rate reaching 42.52% against 85.90% in a synthetic solution.
Cite this paper: Kra, D. , Atheba, G. , Kouadio, N. , Drogui, P. and Trokourey, A. (2021) Activated Carbon Based on Acacia Wood (Auriculeaformis, C&ocircte d’Ivoire) and Application to the Environment through the Elimination of Pb2+ Ions in Industrial Effluents. Journal of Encapsulation and Adsorption Sciences, 11, 18-43. doi: 10.4236/jeas.2021.111002.
References

[1]   Chen, Y., Xu, J., Xie, R., Huang, L. and Jiang, J. (2018) Impacts of Biochar and Oyster Shells Waste on the Immobilization of Arsenic in Highly Contaminated Soils. Journal of Environmental Management, 217, 646-653.
https://doi.org/10.1016/j.jenvman.2018.04.007

[2]   Milan, M., Milovan, P., Aleksandar, B., Aleksandra, Z., Marjan, R. (2011) Removal of Lead(II) Ions from Aqueous Solutions by Adsorption Onto Pine Cone Activated Carbon. Desalination, 276, 53-59.
https://doi.org/10.1016/j.desal.2011.03.013

[3]   Mimanne, G., Benhabib, K. and Benghalem, A. (2014) Etude de l’Adsorption des Métaux Lourds (Pb et Cd) en Solution Aqueuse sur Charbon Actif et Montmorillonite Sodée de l’Ouest Algérien. Journal of Materials and Environmental Science, 5, 1298-1307.

[4]   Han, Y., Boateng, A.A., Qi, P.X., Lima, I.M. and Chang, J. (2013) Heavy Metal and Phenol Adsorptive Properties of Biochars from Pyrolyzed Switch Grass and Woody Biomass in Correlation with Surface Properties. Journal of Environmental Management, 118, 196-204.
https://doi.org/10.1016/j.jenvman.2013.01.001

[5]   Gercel, O. and Gercel, H.F. (2007) Adsorption of Lead(II) Ions from Aqueous Solutions by Activated Carbon Prepared from Biomass Plant Material of Euphorbia rigida. Chemical Engineering Journal, 132, 289-297.
https://doi.org/10.1016/j.cej.2007.01.010

[6]   Ahn, C.K., Park, D., Woo, S.H. and Park, J.M. (2009) Removal of Cationic Heavy Metal from Aqueous Solution by Activated Carbon Impregnated with Anionic Surfactants. Journal of Hazardous Materials, 164, 1130-1136.
https://doi.org/10.1016/j.jhazmat.2008.09.036

[7]   Amuda, O.S., Giwa, A.A. and Bello, I.A. (2007) Removal of Heavy Metal from Industrial Wastewater Using Modified Activated Coconut Shell Carbon. Biochemical Engineering Journal, 36, 174-181.
https://doi.org/10.1016/j.bej.2007.02.013

[8]   Hecini, L. and Achour, S. (2014) Coagulation-floculation au sulfate d’aluminium de composés organiques phénoliques et effet de sels de calcium et de magnésium. Revue des Sciences de l’Eau, 27, 271-280.
https://doi.org/10.7202/1027810ar

[9]   Chikhi, M. (2008) Etude de la complexation des cations métalliques en vue de leur séparation par un procédé membranaire. Thèse de Doctorat d’État Université Mentouri Constantine, Algerie, département de chimie industrielle, 144 p.

[10]   Brahima, S., Patrick, D., Géraldo, B., Jean, F.B. and Marc, H. (2011) État actuel des connaissances des procédés de bioréacteur à membrane pour le traitement et la réutilisation des eaux usées industrielles et urbaines. Revue des Sciences de l’eau, 24, 283-310.
https://doi.org/10.7202/1006478ar

[11]   Liu, Y., Yan, J., Yuan, D., Li, Q. and Wu, X. (2013) The Study of Lead Removal from Aqueous Solution Using an Electrochemical Method with a Stainless Steel Net Electrode Coated with Single Wall Carbon Nanotubes. Chemical Engineering Journal, 218, 81-88.
https://doi.org/10.1016/j.cej.2012.12.020

[12]   Deng, L., Su, Y., Su, H., Wang, X. and Zhu, X. (2007) Sorption and Desorption of Lead(II) from Wastewater by Green Algae Cladophora fascicularis. Journal of Hazardous Materials, 143, 220-225.
https://doi.org/10.1016/j.jhazmat.2006.09.009

[13]   Mohandas, J., Kumar, T., Rajan, S.K., Velmurugan, S. and Narasimhan, S.V. (2008). Introduction of Bifunctionality into the Phosphinic Acid Ion-Exchange Resin for Enhancing Metal Ion Complexation. Desalination, 232, 3-10.
https://doi.org/10.1016/j.desal.2008.01.005

[14]   Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S. and Ok, Y.S. (2014) Biochar as a Sorbent for Contaminant Management in Soil and Water: A Review. Chemosphere, 99, 19-33.
https://doi.org/10.1016/j.chemosphere.2013.10.071

[15]   Richards, S., Dawson, J. and Stutter, M. (2019) The Potential Use of Natural vs Commercial Biosorbent Material to Remediate Stream Waters by Removing Heavy Metal Contaminants. Journal of Environmental Management, 231, 275-281.
https://doi.org/10.1016/j.jenvman.2018.10.019

[16]   Bossombra, K.V., Tchirioua, E., Ekou, L. and Trong-On, D. (2018) Nitrogen Enrichment of Activated Carbon Made from Coconut Shell of Ivory Coast and Its Application in Cd2+ Ions Removal. Australian Journal of Basic and Applied Sciences, 12, 38-44.

[17]   Gnonsoro, U.P., Yao, K.M., Yao, B.L, Kouassi, A.M., Dembélé, A., Kouakou, Y.U., Ouattara, K.P.H., Diabaté, D. and Trokourey, A. (2015) Adsorption du benzo(a)pyrène sur du charbon activé à base de coques de coco provenant de Côte d’Ivoire. International Journal of Biological and Chemical Sciences, 9, 2701-2711.
https://doi.org/10.4314/ijbcs.v9i5.39

[18]   Atheba, P., Allou, N.B., Drogui, P. and Trokourey, A. (2018) Adsorption Kinetics and Thermodynamics Study of Butylparaben on Activated Carbon Coconut Based. Journal of Encapsulation and Adsorption Sciences, 8, 39-57.
https://doi.org/10.4236/jeas.2016.82003

[19]   Ouattara, K.P.H. (2014) Etude de l’adsorption de l’aspirine sur des charbons activés préparés à partir de coques d’arachide (Arachis hypogaea) et de soja vert (vigna radiata). N° d’ordre 916/2014, Thèse de doctorat, Université Félix Houphouët Boigny d’Abidjan, Côte d’Ivoire, 131 p.

[20]   Yobouet, Y.A., Aboua, K.N., Adouby, K. and Yao, K.B. (2018) Élimination du plomb et du cuivre en solution aqueuse par des charbons à base de bois de Pterygota macrocarpa. Afrique Science, 14, 38-47.

[21]   Kra, D.O., Kouadio, N.A., Atheba, G.P., Coulibaly, B., Allou, N.B., Gbassi, K.G. and Trokourey, A. (2015) Modélisation des propriétés adsorbantes de charbons activés issus de deux variétés d’Acacia (auriculeaformis et mangium). International Journal of Innovation and Scientific Research, 13, 542-553.

[22]   Boehm, H.P. (1994) Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons. Carbon, 32, 759-769.
https://doi.org/10.1016/0008-6223(94)90031-0

[23]   Kumar, D.B. and Smaïl, K. (2011) Étude cinétique et thermodynamique de l’adsorption d’un colorant basique sur la sciure de bois. Revue des sciences de l’eau/Journal of Water Science, 24,131-144.
https://doi.org/10.7202/1006107ar

[24]   Gueu, S., Yao, B., Adouby, K. and Ado, G. (2006) Heavy Metals Removal in Aqueous Solution by Activated Carbons Prepared from Coconut Shell and Seed Shell of Palm Tree. Journal of Applied Sciences, 13, 2789-2793.
https://doi.org/10.3923/jas.2006.2789.2793

[25]   Ousmaila, S.M., Adamou, Z. and Ibrahim, D. (2016) Préparation et caractérisation de charbons actifs à base de coques de noyaux de Balanites Eagyptiaca et de Zizyphus Mauritiana. Journal de la Société Ouest-Africaine de Chimie, 41, 59-67.

[26]   Marwa, F.E., Mohamed, R.E.A. and Hassan, S.H. (2016) Adsorption Proile of Basic Dye onto Novel Fabricated Carboxylated Functionalized Co-Polymer Nanofibers. Polymers, 8, Article No. 177.
https://doi.org/10.3390/polym8050177

[27]   Nethaji, S., Sivasamy, A. and Mandal, A.B. (2013) Adsorption Isotherms, Kinetics and Mechanism for the Adsorption of Cationic and Anionic Dyes Onto Carbonaceous Particles Prepared from Juglans regia Shell Biomass. International Journal of Environmental Science and Technology, 10, 231-242.
https://doi.org/10.1007/s13762-012-0112-0

[28]   Bendaho, D., Ainad, T.D. and Bassou, D. (2014) Adsorption du cuivre Cu(II) en solution par l’argile brute et activée de la région de Tiout-Naama sud-ouest Algérien. Revue science des matériaux, 2, 23-34.

[29]   Song, H.L., Jiao, F.P., Jiang, X.Y., Yu, J.G., Chen, X.Q. and Du, S.L. (2013) Removal of Vanadate Anion by Calcined Mg/Al-CO3 Layered Double Hydroxide in Aqueous Solution. Transactions of Nonferrous Metals Society of China, 23, 3337-3345.
https://doi.org/10.1016/S1003-6326(13)62873-3

[30]   Murat, E., Suat, U., Selhan, K. and Turgay, T. (2013) Removal of Lead(II) Ions from Aqueous Solutions onto Activated Carbon Derived from Waste Biomass. The Scientific World Journal, 2013, Article ID: 146092.
https://doi.org/10.1155/2013/146092

[31]   Lee, X.J., Lee, L.Y., Hiew, B.Y.Z., Gan, S. and Gopa, K. S. (2017) Multistage Optimizations of Slow Pyrolysis Synthesis of Biochar from Palm Oil Sludge for Adsorption of Lead. Bioresource Technology, 245, 944-953.
https://doi.org/10.1016/j.biortech.2017.08.175

[32]   Bardestani, R., Roy, C. and Kaliaguine, S. (2019) The Effect of Biochar Mild Air Oxidation on the Optimization of Lead(II) Adsorption from Wastewater. Journal of Environmental Management, 240, 404-420.
https://doi.org/10.1016/j.jenvman.2019.03.110

[33]   N’guadi, B.A., Jitu, S. and Rajib, L.G. (2018) Use of Calcined Mg-Al Layered Double Hydroxides to Regulate Endocrine Disruptor Methylparaben in Excess as Adsorbent and as Control Releasing Agent in Normal Situations. Journal of Environmental Chemical Engineering, 6, 1189-1200.
https://doi.org/10.1016/j.jece.2017.12.015

[34]   Abou-El-Sherbini, K.S., Kenawy, I.M., Hafez, M.A., Lotfy, H.R. and Abd Elbary, Z.M. (2015) Synthesis of Novel CO2-3/Cl--Bearing 3(Mg + Zn)/(Al + Fe) Layered Double Hydroxides for the Removal of Anionic Hazards. Journal of Environmental Chemical Engineering, 3, 2707-2721.
https://doi.org/10.1016/j.jece.2015.09.015

[35]   Madhava, R.A., Chandra, R.A., Seshaiah, A.K., Choudary, B. and Wang, M.C. (2008) Activated Carbon from Ceiba pentandra Hulls, an Agricultural Waste, as an Adsorbent in the Removal of Lead and Zinc from Aqueous Solutions. Waste Management, 28, 849-858.
https://doi.org/10.1016/j.wasman.2007.01.017

[36]   Karagoz, S., Tay, T., Ucar, S. and Erdem, M. (2008) Activated Carbons from Waste Biomass by Sulfuric Acid Activation and Their Use on Methylene Blue Adsorption. Bioresource Technology, 99, 6214-6222.
https://doi.org/10.1016/j.biortech.2007.12.019

[37]   Ricordel, S., Taha, S., Cisse, I. and Dorange, G. (2001) Heavy Metals Removal by Adsorption onto Peanut Husks Carbon: Characterization, Kinetic Study and Modeling. Separation and Purification Technology, 24, 389-401.
https://doi.org/10.1016/S1383-5866(01)00139-3

[38]   Kikuchi, Y., Qian Q., Machida, M. and Tatsumoto, H. (2006) Effect of ZnO Loading to Activated Carbon on Pb(II) Adsorption from Aqueous Solution. Carbon, 44, 195-202.
https://doi.org/10.1016/j.carbon.2005.07.040

[39]   Lalhruaitluanga, H., Jayaram, K., Prasad, M.N.V. and Kumar, K.K. (2010) Lead(II) Adsorption from Aqueous Solutions by Raw and Activated Charcoals of Melocanna baccifera Roxburgh (Bamboo)—A Comparative Study. Journal of Hazardous Materials, 175, 311-318.
https://doi.org/10.1016/j.jhazmat.2009.10.005

[40]   Alghamdi, A.A., Al-Odayni, A.B., Saeed, W.S., Al-Kahtani, A., Alharthi, F.A. and Aouak, T. (2019) Efficient Adsorption of Lead(II) from Aqueous Phase Solutions Using Polypyrrole-Based Activated Carbon. Materials, 12, Article No. 2020.
https://doi.org/10.3390/ma12122020

[41]   Pehlivan, E., Yanik, B.H., Ahmetli, G. and Pehlivan, M. (2008) Equilibrium Isotherm Studies for the Uptake of Cadmium and Lead Ions onto Sugar Beet Pulp. Bioresource Technology, 99, 3520-3527.
https://doi.org/10.1016/j.biortech.2007.07.052

[42]   Oliveira, T.F., Moraes, P.L.A., César, M.V.J., Vieira, F.M., Bergamasco, R. and Vieira, A. (2019) Analysis of the Influence of Natural Adsorbent Functionalization (Moringa oleifera) for Pb(II) Removal from Contaminated Water. Environmental Progress & Sustainable Energy, 32, e13318.
https://doi.org/10.1002/ep.13318

[43]   Johns, M.M., Marshall, W.E. and Toles, C.A. (1998) Agricultural By-Products as Granular Activated Carbons for Adsorbing Dissolved Metals and Organics. Journal of Chemical Technology & Biotechnology, 71,131-140.
https://doi.org/10.1002/(SICI)1097-4660(199802)71:2%3C131::AID-JCTB821%3E3.0.CO;2-K

[44]   Kouakou, Y.U., Ello, A.S., Yapo, A.J., Gouli-Bi, I.M. and Trokourey, A. (2014) Study of Lead Adsorption on Activated Carbons. International Journal of Biological and Chemical Sciences, 8, 1254-1261.
https://doi.org/10.4314/ijbcs.v8i3.38

[45]   Abdulkarim, M. and Al-Rub, F.A. (2004) Adsorption of Lead Ions from Aqueous Solution onto Activated Carbon and Chemically-Modified Activated Carbon Prepared from Date Pits. Adsorption Science & Technology, 22, 119-134.
https://doi.org/10.1260/026361704323150908

[46]   Ali, I.H., Al Mesfer, M.K., Khan, M.I., Danish, M. and Alghamdi, M.M. (2019) Exploring Adsorption Process of Lead(II) and Chromium(VI) Ions from Aqueous Solutions on Acid Activated Carbon Prepared from Juniperus procera Leaves. Processes, 7, Articel No. 217.
https://doi.org/10.3390/pr7040217

[47]   Kobya, M., Demirbas, E., Senturk, E. and Ince, M. (2005) Adsorption of Heavy Metal Ions from Aqueous Solutions by Activated Carbon Prepared from Apricot Stone. Bioresource Technology, 96, 1518-1521.
https://doi.org/10.1016/j.biortech.2004.12.005

[48]   Mouni, L., Merabet, D., Bouzaza, A. and Belkhiri, L. (2011) Adsorption of Pb(II) from Aqueous Solutions Using Activated Carbon Developed from Apricot Stone. Desalination, 276, 148-153.
https://doi.org/10.1016/j.desal.2011.03.038

[49]   Imamoglu, M. and Tekir, O. (2008) Removal of Copper(II) and Lead(II) Ions from Aqueous Solutions by Adsorption on Activated Carbon from a New Precursor Hazelnut Husks. Desalination, 228, 108-113.
https://doi.org/10.1016/j.desal.2007.08.011

[50]   Dada, A.O., Olalekan, A.P., Olatunya, A.M. and Dada, O. (2012) Langmuir, Freundlich, Temkin and Dubinin-Radushkevich Isotherms Studies of Equilibrium Sorption of Zn2+ Unto Phosphoric Acid Modified Rice Husk. Journal of Applied Chemistry, 3, 38-45.

[51]   Dipu, B., Shigeo, S. and Shigeru, K. (2008) Surface Modified Carbon Black for As(V) Removal. Journal of Colloid and Surface Science, 319, 53-62.
https://doi.org/10.1016/j.jcis.2007.11.019

[52]   Oualid, H. and Emmanuel, N. (2005) Etude des équilibres et de la cinétique d’adsorption du cuivre Cu(II) sur des particules réactives dans un réacteur fermé, parfaitement agité et thermostaté. Lebanese Science Journal, 6, 59-68.

[53]   Dos Santos, R.M., Gonçalves, R.G., Constantino, V.R., Santilli, C.V. and Borges, P.D. (2017) Adsorption of Acid Yellow 42 Dye on Calcined Layered Double Hydroxide: Effect of Time, Concentration, pH and Temperature. Applied Clay Science, 140, 132-139.
https://doi.org/10.1016/j.clay.2017.02.005

[54]   Chouchane, T., Chouchane, S., Boukari, A., Balaska, A. and Samar, M.H. (2011) Elimination du plomb en solution par la science du bois. Revues des énergies renouvelables,14, 613-626.

[55]   Emna, Z., Ferial, K., Mohamed, S.M. and Hermouch ,Y. (2015) Étude cinétique et thermodynamique de l’adsorption d’un métal lourd (Fer(III)) sur un déchet de clou de girofle en milieu aqueux. Matériaux et Techniques, 103, Article No. 705.
https://doi.org/10.1051/mattech/2016005

[56]   Rather, L.J., Shahid, U.I., Khan, M.A. and Mohammad, F. (2016) Adsorption and Kinetic Studies of Adhatoda vasica Natural Dye onto Woolen Yarn with Evaluations of Colorimetric and Fluorescence Characteristics. Journal of Environmental Chemical Engineering, 4, 1780-1796.
https://doi.org/10.1016/j.jece.2016.03.003

 
 
Top