AJCC  Vol.10 No.1 , March 2021
Analysis of Trends in Drought with the Non-Parametric Approach in Vietnam: A Case Study in Ninh Thuan Province
Abstract: A quantitative study was used in the study of the tendency to change drought indicators in Vietnam through the Ninh Thuan province case study. The research data are temperature and precipitation data of 11 stations from 1986 to 2016 inside and outside Ninh Thuan province. To do the research, the author uses a non-parametric analysis method and the drought index calculation method. Specifically, with the non-parametric method, the author uses the analysis, Mann-Kendall (MK) and Theil-Sen (Sen’s slope), and to analyze drought, the author uses the Standardized Precipitation Index (SPI) and the Moisture Index (MI). Two Softwares calculated in this study are ProUCL 5.1 and MAKENSEN 1.0 by the US Environmental Protection Agency and Finnish Meteorological Institute. The calculation results show that meteorological drought will decrease in the future with areas such as Phan Rang, Song Pha, Quan The, Ba Thap tend to increase very clearly, while Tam My and Nhi Ha tend to increase very clearly short. With the agricultural drought, the average MI results increased 0.013 per year, of which Song Pha station tended to increase the highest with 0.03 per year and lower with Nhi Ha with 0.001 per year. The forecast results also show that by the end of the 21st century, the SPI tends to decrease with SPI 1 being −0.68, SPI 3 being −0.40, SPI 6 being −0.25, SPI 12 is 0.42. Along with that is the forecast that the MI index will increase 0.013 per year to 2035, the MI index is 0.93, in 2050 it is 1.13, in 2075 it will be 1.46, and by 2100 it is 1.79. Research results will be used in policymaking, environmental resources management agencies, and researchers to develop and study solutions to adapt and mitigate drought in the context of variable climate change.
Cite this paper: Tuan, N. and Canh, T. (2021) Analysis of Trends in Drought with the Non-Parametric Approach in Vietnam: A Case Study in Ninh Thuan Province. American Journal of Climate Change, 10, 51-84. doi: 10.4236/ajcc.2021.101004.

[1]   Abares (2012). Drought in Australia: Context, Policy, and Management (No. 43282). Australian Bureau of Agricultural and Resource Economics and Sciences report to client (GHD Pty. Ltd.) prepared for the Australia China Environment Development Partnership.

[2]   Adhikari, A., Mainali, K. P., Rangwala, I., & Hansen, A. J. (2019). Various Measures of Potential Evapotranspiration Have Species-Specific Impact on Species Distribution Models. Ecological Modelling, 414, Article ID: 108836.

[3]   AghaKouchak, A. (2014). A Baseline Probabilistic Drought Forecasting Framework Using Standardized Soil Moisture Index: Application to the 2012 United States Drought. Hydrology and Earth System Sciences, 18, 2485-2492.

[4]   Ahmed, S. I., Rudra, R., Dickinson, T., & Ahmed, M. (2014). Trend and Periodicity of Temperature Time Series in Ontario. American Journal of Climate Change, 3, 272-288.

[5]   Allaby, M., Garratt, R., & Allaby, M. (2003). Droughts (Rev. ed.). Facts on File.

[6]   AMS (1997). Meteorological Drought—Policy Statement. Bulletin of the American Meteorological Society, 78, 847-849.

[7]   Azad, A. S., Hasan, Md. K., Rahman, M. A. I., Rahman, Md. M., & Shahriar, N. (2014). Exploring the Behavior and Changing Trends of Rainfall and Temperature Using Statistical Computing Techniques. In T. Islam, P. K. Srivastava, M. Gupta, X. Zhu, & S. Mukherjee (Eds.), Computational Intelligence Techniques in Earth and Environmental Sciences (pp. 53-78). Dordrecht: Springer.

[8]   Bayazıt, Y., Bakış, R., & Koç, C. (2019). Mapping of Stream Flow Trends in Porsuk Basin Using GIS Environment. Journal of Geoscience and Environment Protection, 7, 58-66.

[9]   Bera, S. (2017). Trend Analysis of Rainfall in Ganga Basin, India during 1901-2000. American Journal of Climate Change, 6, 116-131.

[10]   Bhuyan, Md. D. I., Islam, Md. M., & Bhuiyan, Md. E. K. (2018). A Trend Analysis of Temperature and Rainfall to Predict Climate Change for Northwestern Region of Bangladesh. American Journal of Climate Change, 7, 115-134.

[11]   Blain, G. C. (2012). Revisiting the Probabilistic Definition of Drought: Strengths, Limitations and an Agrometeorological Adaptation. Bragantia, 71, 132-141.

[12]   Bordi, I., & Sutera, A. (2007). Drought Monitoring and Forecasting at Large Scale. In G. Rossi, T. Vega, & B. Bonaccorso (Eds.), Methods and Tools for Drought Analysis and Management (pp. 3-27). Dordrecht: Springer.

[13]   Brewer, M. J., & Heim Jr., R. R. (2011). The Global Drought Monitor Portal.

[14]   Cardoso, L. F. N., Silva, W. L., & da Silva, M. G. A. J. (2016). Long-Term Trends in Near-Surface Wind Speed over the Southern Hemisphere: A Preliminary Analysis. International Journal of Geosciences, 7, 938-943.

[15]   Chatterjee, K., Bandyopadhyay, A., Ghosh, A., & Kar, S. (2015). Assessment of Environmental Factors Causing Wetland Degradation, Using Fuzzy Analytic Network Process: A case Study on Keoladeo National Park, India. Ecological Modelling, 316, 1-13.

[16]   Cooley, H., Donnelly, K., Phurisamban, R., & Subramanian, M. (2015). Impacts of California’s Ongoing Drought: Agriculture. Oakland, CA: Pacific Institute.

[17]   Correia, F. N. (2007). Water Scarcity and Drought a Priority of the Portuguese Presidency. Ministério do Ambiente, do ordenamento do território e do desenvolvimento regional.

[18]   CRED (2006). CRED Crunch December 2006. Centre for Research on the Epidemiology of Disasters. Belgium.

[19]   Dai, A., Trenberth, K. E., & Qian, T. (2004). A Global Dataset of Palmer Drought Severity Index for 1870-2002: Relationship with Soil Moisture and Effects of Surface Warming. Journal of Hydrometeorology, 5, 1117-1130.

[20]   Ding, Y., Hayes, M. J., & Widhalm, M. (2010). Measuring Economic Impacts of Drought: A Review and Discussion. Disaster Prevention and Management: An International Journal, 20, 434-446.

[21]   Djaman, K., Koudahe, K., & Ganyo, K. K. (2017). Trend Analysis in Annual and Monthly Pan Evaporation and Pan Coefficient in the Context of Climate Change in Togo. Journal of Geoscience and Environment Protection, 5, 41-56.

[22]   Doan Van Diem, & Tran Danh Thin (2007). Assessment of Drought Impacts and Some Keeping Soil Moisture Measures on Winter Maize in Midland Area of Northern Vietnam. VNU Journal of Science: Natural Sciences and Technology, 23, 91-98.

[23]   Domeisen, N. (1995). Disasters: Threat to Social Development. STOP Disasters, The IDNDR Magazine No. 23, Geneva, Switzerland: IDNDR Secretariat.

[24]   DrinC (2019). Drought Indices Calculator (1.7). Computer Software.

[25]   EPA (2016). ProUCL Software 5.1.00 (5.1).

[26]   Ernest, S., Nduganda, A. R., & Kashaigili, J. J. (2017). Urban Climate Analysis with Remote Sensing and Climate Observations: A Case of Morogoro Municipality in Tanzania. Advances in Remote Sensing, 6, 120-131.

[27]   Esfahanian, E., Nejadhashemi, A. P., Abouali, M., Adhikari, U., Zhang, Z., Daneshvar, F., & Herman, M. R. (2017). Development and Evaluation of a Comprehensive Drought Index. Journal of Environmental Management, 185, 31-43.

[28]   FAO (1978). Report on the Agro-Ecological Zones Project. Vol. 1: Methodology and Result for Africa. World Soil Resources Report 48/1, FAO.

[29]   Gillette, H. P. (1950). A Creeping Drought under Way. Water and Sewage Works, 104-105.

[30]   Govorushko, S. M. (2012). Natural Processes and Human Impacts. Dordrecht: Springer.

[31]   GSA (2006). Managing Drought: A Roadmap for Change in the United States. A conference report from Managing Drought and Water Scarcity in Vulnerable Environments, Longmont, CO, 18-20 September 2006.

[32]   Hashemi, F., & Habibian, M. T. (1979). Limitations of Temperature-Based Methods in Estimating Crop Evapotranspiration in Arid-Zone Agricultural Development Projects. Agricultural Meteorology, 20, 237-247.

[33]   Helsel, D. R., & Hirsch, R. M. (1992). Statistical Methods in Water Resources (Vol. 49, pp. iii-xvi). Amsterdam: Elsevier Science Ltd.

[34]   Henry, B., McKeon, G., Syktus, J., Carter, J., Day, K., & Rayner, D. (2007). Climate Variability, Climate Change and Land Degradation. In M. V. K. Sivakumar, & N. Ndiang’ui (Eds.), Climate and Land Degradation (pp. 205-221). Berlin, Heidelberg: Springer.

[35]   Herweijer, C., Seager, R., Cook, E. R., & Emile-Geay, J. (2007). North American Droughts of the Last Millennium from a Gridded Network of Tree-Ring Data. Journal of Climate, 20, 1353-1376.

[36]   Islam, A. W. (2015). Rainy/Non-Rainy Day Pattern Analysis for North Carolina. American Journal of Climate Change, 4, 1-8.

[37]   Jenkins, K. L. (2011). Modelling the Economic and Social Consequences of Drought under Future Projections of Climate Change. PhD Thesis, Cambridge: University of Cambridge.

[38]   Jeyaseelan, A. T. (2003). Droughts & Floods Assessment and Monitoring Using Remote Sensing and GIS. In M. V. K Sivakumar et al. (Eds.), Satellite Remote Sensing and GIS Applications in Agricultural Meteorology (Vol. 291). Geneva, Switz: World Meteorological Organisation.

[39]   Kendall, M. G. (1975). Rank Correlation Methods. London: Griffin.

[40]   Koba, M. (2014, September 5). Global Drought Real Threat to Lives and Economies: Experts. CNBC.

[41]   Koudahe, K., Kayode, A. J., Samson, A. O., Adebola, A. A., & Djaman, K. (2017). Trend Analysis in Standardized Precipitation Index and Standardized Anomaly Index in the Context of Climate Change in Southern Togo. Atmospheric and Climate Sciences, 7, 401-423.

[42]   Lake, P. S. (2011). Drought and Aquatic Ecosystems: Effects and Responses. Hoboken, NJ: Wiley-Blackwell.

[43]   Le Thi Thu Hien (2013). Application the Normalised Difference Vegetation Index of Landsat Imagery to Assess the Desertification in Binh Thuan Province. Vietnam Journal of Earth Sciences, 35, 357-363.

[44]   Mann, H. B. (1945). Non-Parametric Tests Against Trend. Econometrica, 13, 245-259.

[45]   McKee, T. B., Doesken, N. J., Kleist, J. et al. (1993). The Relationship of Drought Frequency and Duration to Time Scales. Proceedings of the 8th Conference on Applied Climatology, 17, 179-183.

[46]   Moeletsi, M. E., Walker, S., & Hamandawana, H. (2013). Comparison of the Hargreaves and Samani Equation and the Thornthwaite Equation for Estimating Dekadal Evapotranspiration in the Free State Province, South Africa. Physics and Chemistry of the Earth, Parts A/B/C, 66, 4-15.

[47]   Murumkar, A. R., & Arya, D. S. (2014). Trend and Periodicity Analysis in Rainfall Pattern of Nira Basin, Central India. American Journal of Climate Change, 3, 60-70.

[48]   Ngo Dinh Tuan, & Ngo Le An (2016). Research on Drought Factors, Criteria, Classification in Ninh Thuan-Binh Thuan Provinces and Their Prevention and Mitigation Measures. Journal of Water Resources and Environmental Engineering, 30, 132.

[49]   Nguyễn Đinh Tuấn, Bảo Văn Tuy, & Nguyễn Kỳ Phùng (2012). Tác Động của biến Đổi khí hậu Đến lĩnh vực nông nghiệp ở Ninh Thuận và giải pháp tương ứng. Tạp Chí Tài Nguyên và Môi Trường, 23, pp. (In Vietnamese)

[50]   Nguyễn Đình Vượng, & Huỳnh Ngọc Tuyên (2012). Một số giải pháp sử dụng hợp ly tài nguyên nước, phòng chống hạn hán, sa mạc hóa, thích ứng biến Đổi khí hậu trên vùng Đất cát ven biển Ninh Thuận. Thông Tin Khoa Học Công Nghệ Ninh Thuận, Nghiên cứu trao Đổi. (In Vietnamese)

[51]   Nguyễn Hồng Trường (2008). ứng dụng các biện pháp truyền thống và khoa học kỹ thuật mới nhằm khai thác, bảo vệ tài nguyên Đất và nước, góp phần phòng chống hạn ở xã Phước Nam tỉnh Ninh Thuận. Tạp Chí Khí Tượng Thủy Văn, 8, 45-50. (In Vietnamese)

[52]   Nyatuame, M., & Agodzo, S. (2017). Analysis of Extreme Rainfall Events (Drought and Flood) over Tordzie Watershed in the Volta Region of Ghana. Journal of Geoscience and Environment Protection, 5, 275-295.

[53]   Ogunrinde, A. T., Olasehinde, D. A., & Olotu, Y. (2020). Assessing the Sensitivity of Standardized Precipitation Evapotranspiration Index to Three Potential Evapotranspiration Models in Nigeria. Scientific African, 8, e00431.

[54]   Okafor, G. C., Jimoh, O. D., & Larbi, K. I. (2017). Detecting Changes in Hydro-Climatic Variables during the Last Four Decades (1975-2014) on Downstream Kaduna River Catchment, Nigeria. Atmospheric and Climate Sciences, 7, 161-175.

[55]   Pereira, A. R., & Paes De Camargo, Â. (1989). An Analysis of the Criticism of Thornthwaite’s Equation for Estimating Potential Evapotranspiration. Agricultural and Forest Meteorology, 46, 149-157.

[56]   Pereira, A. R., & Pruitt, W. O. (2004). Adaptation of the Thornthwaite Scheme for Estimating Daily Reference Evapotranspiration. Agricultural Water Management, 66, 251-257.

[57]   Pham Quang Vinh, & Pham Thi Thanh Huong (2013). Assessing Agricultural Drought for Binh Thuan Province under Climate Change Scenario. Vietnam Journal of Earth Sciences, 34, 513-523.

[58]   Prud’Homme, A. (2011, July 16). Drought: A Creeping Disaster. The New York Times.

[59]   Salmi, T., Määttä, A., Anttila, P., Ruoho-Airola, T., & Amnell, T. (2002). Detecting Trends of Annual Values of Atmospheric Pollutants by the Mann-Kendall Test and Sen’s Slope Estimates the Excel Template Application MAKESENS (Vol. 31). Finnish Meteorological Institute.

[60]   Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall’s Tau. Journal of the American Statistical Association, 63, 1379-1389.

[61]   Svoboda, M. D., Fuchs, B. A., Poulsen, C. C., & Nothwehr, J. R. (2015). The Drought Risk Atlas: Enhancing Decision Support for Drought Risk Management in the United States. Journal of Hydrology, 526, 274-286.

[62]   Tadesse, T., Haile, M., Senay, G., Wardlow, B. D., & Knutson, C. L. (2008). The Need for Integration of Drought Monitoring Tools for Proactive Food Security Management in Sub-Saharan Africa. Natural Resources Forum, 32, 265-279.

[63]   Tannehill, I. R. (1947). Drought, Its Causes and Effects. Princeton, NJ: Princeton University Press.

[64]   Thao, P. T. P., Thu, P. M., Giam, N. M., Duan, H. D., & Long, B. H. (2018). Relationship between Drought and Rainfall Due to Tropical Cyclone and Depression in Ninh Thuan, Vietnam. Current Journal of Applied Science and Technology, 30, 1-8.

[65]   Theil, H. (1950). A Rank-Invariant Method of Linear and Polynomial Regression Analysis, Part I; Confidence Regions for the Parameters of Polynomial Regression Equations. Proceedings of the Royal Netherlands Academy of Sciences, 53, 386-392.

[66]   Thornthwaite, C. W. (1948). An Approach toward a Rational Classification of Climate. Geographical Review, 38, 55-94.

[67]   Tian, Q., Wang, Q., Zhan, C., Li, X., & Liu, X. (2012). Analysis of Climate Change in the Coastal Zone of Eastern China, against the Background of Global Climate Change over the Last Fifty Years: Case Study of Shandong Peninsula, China. International Journal of Geosciences, 3, 379-390.

[68]   Tigkas, D., Vangelis, H., & Tsakiris, G. (2015). DrinC: A Software for Drought Analysis Based on Drought Indices. Earth Science Informatics, 8, 697-709.

[69]   Tigkas, D., Vangelis, H., & Tsakiris, G. (2017). An Enhanced Effective Reconnaissance Drought Index for the Characterisation of Agricultural Drought. Environmental Processes, 4, 137-148.

[70]   Tigkas, D., Vangelis, H., & Tsakiris, G. (2020). Implementing Crop Evapotranspiration in RDI for Farm-Level Drought Evaluation and Adaptation under Climate Change Conditions. Water Resources Management, 34, 4329-4343.

[71]   UN Water (2015a). Proceedings of the Regional Workshops on Capacity Development to Support National Drought Management Policies for Eastern and Southern Africa and the Near East and North Africa Regions. UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University, Bonn, Germany: UNW-DPC.

[72]   UN Water (2015b). Synthesis: Capacity Development to Support National Drought Management Policies. UN-Water Decade Programme on Capacity Development (UNW-DPC) United Nations University, Bonn, Germany: UNW-DPC.

[73]   UNDP (2012). Drought Risk Management: Practitioner’s Perspectives from Africa and Asia. United Nations Development Programme, United Nation, United Nations Office at Nairobi, Publishing Services Section, ISO 14001:2004-certifed.

[74]   UNESCO (2014). Ntegrated Drought Risk Management—DRM National Framework for Iraq: An Analysis Repo (2nd Edition SC/2014/REPORT/H/1, p. 143). Iraq: UNESCO Office.

[75]   UNISDR (2009). Drought Risk Reduction Framework and Practices: Contributing to the Implementation of the Hyogo Framework for Action. United Nations Secretariat of the International Strategy for Disaster Reduction (UNISDR), Geneva, Switzerland, in partnership with the National Drought Mitigation Center (NDMC), University of Nebraska-Lincoln, Lincoln, Nebraska, USA.

[76]   Weltbank (Ed.) (2006). Overcoming Drought: Adaptation Strategies for Andhra Pradesh, India. World Bank.

[77]   Wilhite, D. A. (2000). Drought as a Natural Hazard: Concepts and Definitions. In D. Wilhite (Ed.), Drought: A Global Assessment (Vol. 1, pp. 3-18). London: Routledge.

[78]   Wilhite, D. A., & Glantz, M. H. (1985). Understanding: Drought Phenomenon: The Role of Definitions. Water International, 10, 111-120.

[79]   Wilhite, D. A., & Glantz, M. H. (1987). Understanding the Drought Phenomena: The Role of Definitions. In D. A. Wilhite, & W. E. Easterling (Eds.), Planning for Drought: Towards a Reduction of Societal Vulnerability (pp. 11-27). Boulder, CO: Westview Press.

[80]   WMO (2012). Standardized Precipitation Index User Guide. World Meteorological Organization.

[81]   WMO (2014). World Meteorological Organization (WMO) and Global Water Partnership (GWP) National Drought Management Policy Guidelines: A Template for Action (D.A. Wilhite). Integrated Drought Management Programme (IDMP) Tools and Guidelines Series 1. World Meteorological Organization; Global Water Partnership.

[82]   Zhou, J., Wang, Y., Su, B., Wang, A., Tao, H., Zhai, J., Kundzewicz, Z. W., & Jiang, T. (2020). Choice of Potential Evapotranspiration Formulas Influences Drought Assessment: A Case Study in China. Atmospheric Research, 242, Article ID: 104979.