Back
 JWARP  Vol.13 No.3 , March 2021
Using “Water Evaluation and Planning” (WEAP) Model to Simulate Water Demand in Lobo Watershed (Central-Western Cote d’Ivoire)
Abstract: Climate change continues to pose a threat to the sustainability of water resources while, water need is increasing. In spite of the efforts made by the state authorities to build water infrastructure, a large majority of the population is not having access to drinking water. In this study, Water Evaluation and Planning (WEAP) model was used to model the current situation of water supply and demands, to create scenarios for future water demands and supply. The results show that, in contrast to the livestock sector, which has a zero DNS, huge deficits are observed in reference scenario. These unsatisfied demands (DNS) are dominated by deficits in rice irrigation. The analysis of the evolution of demand according to the growth scenarios has shown that the deficits already observed in the reference scenario will reach 100.45 × 106 m3 in 2040. To mitigate the effects of such deficits, water management optimization measures have been proposed. Strengthening the water supply to urban centers from the creation of dams could considerably reduce the observed deficits. These results are an important decision support tool for sustainable water resource management in the Lobo watershed. However, these strategies to improve access to water depend on the government’s political will on water and economic opportunities.
Cite this paper: Yao, A. , Mangoua, O. , Georges, E. , Kane, A. and Goula, B. (2021) Using “Water Evaluation and Planning” (WEAP) Model to Simulate Water Demand in Lobo Watershed (Central-Western Cote d’Ivoire). Journal of Water Resource and Protection, 13, 216-235. doi: 10.4236/jwarp.2021.133013.
References

[1]   King, C. and Jaafar, H. (2015) Rapid Assessment of the Water-Energy-Food-Climate Nexus in Six Selected Basins of North Africa and West Asia Undergoing Transitions and Scarcity Threats. International Journal of Water Resources Development, 31, 343-359.
https://doi.org/10.1080/07900627.2015.1026436

[2]   Kaniaru, W. (2015) From Scarcity to Security: Water as a Potential Factor for Conflict and Cooperation in Southern Africa, South African. Journal of International Affairs, 22, 381-396.
https://doi.org/10.1080/10220461.2015.1046477

[3]   Naik, P.K. (2017) Water Crisis in Africa: Myth or Reality? International Journal of Water Resources Development, 33, 326-339.
https://doi.org/10.1080/07900627.2016.1188266

[4]   Hu, Z., Wang, L., Wang, Z., Hong, Y. and Zheng, H. (2015) Quantitative Assessment of Climate and Human Impacts on Surface Water Resources in a Typical Semi-Arid Watershed in the Middle Reaches of the Yellow River from 1985 to 2006. International Journal of Climatology, 35, 97-113.
https://doi.org/10.1002/joc.3965

[5]   Ikazaki, K. (2015) Desertification and a New Countermeasure in the Sahel, West Africa. Soil Science and Plant Nutrition, 61, 372-383.
https://doi.org/10.1080/00380768.2015.1025350

[6]   Gan, T.Y., Mari Ito, Hülsmann, S., Qin, X., Lu, X.X., Liong, S.Y., Rutschman, P., Disse, M. and Koivusalo, H. (2016) Possible Climate Change/Variability and Human Impacts, Vulnerability of Drought-Prone Regions, Water Resources and Capacity Building for Africa. Hydrological Sciences Journal, 61, 1209-1226.
https://doi.org/10.1080/02626667.2015.1057143

[7]   Kouassi, A.M., Assoko, A.V.S., Kouakou, K.E., Djé, K.B., Kouamé, K.F. and Biémi, J. (2017) Analyse Des Impacts Hydrologiques De La Variabilité Climatique En Afrique De l’Ouest: Cas Du Bassin Versant Du Bandama En Côte d’Ivoire. Larhyss Journal, 31, 19-40.
https://journals.openedition.org/cybergeo/23388?lang=es

[8]   Mohammed, R. and Scholz, M. (2018) Flow-Duration Curve Integration into Digital Filtering Algorithms for Simulating Climate Variability Based on River Baseflow. Hydrological Sciences Journal, 63, 1558-1573.
https://doi.org/10.1080/02626667.2018.1519318

[9]   Yao, A.B., Kouassi, K.L., Kouakou, K.E., Goula, B.T.A. and Gaye, A.T. (2019) évaluation Des Impacts Potentiels Des Changements Climatiques Sur Les Ecoulements De La Rivière Lobo, Centre-Ouest De La Côte d’Ivoire. Afrique Science, 15, 330-342.

[10]   FAO, FIDA, OMS, PAM et UNICEF (2018) L’état De La Sécurité Alimentaire Et De La Nutrition Dans Le Monde 2018. Renforcer La Résilience Face Aux Changements Climatiques Pour La Sécurité Alimentaire Et La Nutrition. FAO, Rome.

[11]   Amin, A., Zaehringer, J.G., Schwilch, G. and Koné, I. (2015) People, Protected Areas and Ecosystem Services: A Qualitative and Quantitative Analysis of Local People’s Perception and Preferences in Côte d’Ivoire. Natural Resources Forum, 39, 97-109.
https://doi.org/10.1111/1477-8947.12069

[12]   MINEF (2018) Le Magazine Du Ministère Des Eaux et Forêts, N°3, Juillet 2018, 40.

[13]   Ako, A.A., Eyong, E.T.G. and Nkeng, G.E. (2010) Water Resources Management and Integrated Water Resources Management (IWRM) in Cameroon. Water Resources Management, 24, 871-888.
https://doi.org/10.1007/s11269-009-9476-4

[14]   Yao, A.B. (2015) Evaluation Des Potentialités En Eau Du Bassin Versant De La Lobo En Vue D’une Gestion Rationnelle (Centre-Ouest De La Côte d’Ivoire). Thèse de l’Université de Doctorat, Université Nangui Abrogoua, Côte d’Ivoire.

[15]   Yao, A.B., Goula, B.T.A., Kouadio, Z.A., Kouakou, K.E., Kane, A. and Sambou, S. (2012) Analyse De La Variabilité Climatique Et Quantification Des Ressources En Eau En Zone Tropicale Humide. Cas Du Bassin Versant De La Lobo Au Centre-Ouest De La Côte d’Ivoire. Revue Ivoirienne des Sciences et Technologies, 19, 136-157.

[16]   Pothin, K.K. (1988) Pétrographie et géochimie des formations précambriennes de la région d’Odienné (Nord-Ouest). Typologie du volcanisme birimien. Tendances évolutives du Magnétisme Eburnéen. Géochimie de l’Uranium et du Thorium dans les granitoides. Thèse de Doctorat, Université de Cocody, Côte d’Ivoire.

[17]   Yao, A.B., Goula, B.T.A., Kane, A., Mangoua, O.M.J. and Kouassi, K.A. (2016) Cartographie du potentiel en eau souterraine du bassin versant de la Lobo (Centre-Ouest, Côte d’Ivoire). Approche par analyse multicritère. Journal des Sciences Hydrologiques, 61, 856-867.
https://doi.org/10.1080/02626667.2014.932360

[18]   INS Institut National de la Statistique (2015) Résultats globaux. Secrétariat technique permanent, INS, Abidjan.

[19]   Yates, D., Galbraith, H., Purkey, D., Huber-Lee, A., Sieber, J., West, J., Herrod-Julius, S. and Joyce, B. (2008) Climate Warming, Water Storage, and Chinook Salmon in California’s Sacramento Valley. Climatic Change, 91, 335-350.
https://doi.org/10.1007/s10584-008-9427-8

[20]   Stockholm Environmental Institute (SEI) (2014) WEAP Tutorial a Collection of Stand-Alone Modules to Aid in Learning.
http://www.weap21.org/downloads/GWC_Report_4.pdf

[21]   Rochdane, S., Reichert, B., Messouli, M., Babqiqi, A. and Khebiza, M.Y. (2012) Climate Change Impacts on Water Supply and Demand in Rheraya Watershed, with Potential Adaptation Strategies, Morocco. Water, 4, 28-44.
https://doi.org/10.3390/w4010028

[22]   Bouznad, I.E., Zouini, D., Nouiri, I. and Khelfaoui, F. (2016) Essai De Modélisation De La Gestion Des Ressources En Eau Dans La Vallée D’oued Righ (Sahara Septentrional Algérien) Par L’utilisation D’un Outil D’aide A La Decision WEAP. Synthèse: Revue des Sciences et de la Technologie, 33, 56-71.

[23]   Amin, A., Iqbal, J., Asghar, A. and Ribbe, L. (2018) Analysis of Current and Future Water Demands in the Upper Indus Basin under IPCC Climate and Socio-Economic Scenarios Using a Hydro-Economic WEAP Model. Water, 10, 537.
https://doi.org/10.3390/w10050537

[24]   Noufé, D.D., et al. (2019) Application of the Water Evaluation and Planning Model (WEAP) to the Management of Surface Water Resources in the Ivory Coast Basin of the Aghien Lagoon. International Journal of Scientific & Engineering Research, 10, 1605-1613.

[25]   Agarwal, S., Patil, J.P., Goyal, V.C. and Singh, A. (2019) Assessment of Water Supply Demand Using Water Evaluation and Planning, WEAP Model for Ur River Watershed. Journal of The Institution of Engineers, Madhya Pradesh, India, Series A, 100, 21-32.
https://doi.org/10.1007/s40030-018-0329-0

[26]   Stratégie de Réduction de la Pauvreté-DRSP (2010) Rapport du FMI N° 09/156. FMI, 180 p.

[27]   MIRAH Ministère des Ressources Animales et Halieutiques (2014) Plan Stratégique de Développement de l’élevage, de la Pêche et de l’aquaculture en Côte d’Ivoire (PSDEPA 2014-2020). Tome I: Diagnostic-Stratégie de développement-Orientations. Abidjan, Côte d’Ivoire, 102.

[28]   Sieber, J. and Purkey, D. (2015) WEAP-Water Evaluation and Planning System: User Guide for WEAP, 2015. Stockholm Environment Institute-US Center, Somerville.

[29]   Société d’Exploitation et de Distribution d’Eau de Côte d’Ivoire SODECI (2010) Cinquante ans au service public de la Côte d’Ivoire. Document spécial, Abidjan, 51.

[30]   Kambou, D., Xanthoulis, D., Ouattara, K. and Degré, A. (2014) Concepts d’efficience et de productivité de l’eau (synthèse bibliographique). Biotechnologie, Agronomie, Société et Environnement, 18, 108-120.

[31]   Dao, A., Soro, G.E., Fadika, V., Djè, B.D. and Goula, B.T.A. (2018) Modelling Future Water Demand with WEAP Model: The Case Study of Marahoué Basin in Côte d’Ivoire. International Journal of Engineering Research and Application, 8, b46-b53.

[32]   Diabagaté, A., Konan, G.H. and Koffi, A. (2016) Stratégies d’approvisionnement en eau potable dans l’agglomération d’Abidjan (Côte d’Ivoire). Revue internationale de géologie, de géographie et d’écologie tropicales, 4, 345-360.

[33]   Kouassi, A.M., Kouamé, K.F., Saley, M.B. and Biemi, J. (2013) Impacts des changements climatiques sur les eaux souterraines des aquifères de socle cristallin et cristallophyllien en Afrique de l’Ouest: Cas du bassin versant du N’zi-Bandama (Côte d’Ivoire). Larhyss Journal, 16, 121-138.

[34]   Fossou, R.M.N, Lasm, T., Soro, N., Soro, T., Soro, G., De Lasme, O.Z., Baka, D., Onetie, O.Z. and Orou, R. (2015) Variabilité climatique et son impact sur les ressources en eaux souterraines: cas des stations de Bocanda et de Dimbokro au Centre-est de la Côte d’Ivoire (Afrique de l’Ouest). Larhyss Journal, 21, 97-120.

[35]   Santé, N., N’Go, Y.A., Soro, G.E., Meledje, N.H. and Goula, B.T.A. (2019) Characterization of Meteorological Droughts Occurrences in Côte d’Ivoire: Case of the Sassandra Watershed. Climate, 7, 60.
https://doi.org/10.3390/cli7040060

[36]   Koumassi, D.H. (2017) Facteurs explicatifs du tarissement des points d’eau en milieu de socle cristallin dans le Département des collines au Benin. European Scientific Journal, 13, 208-218.
https://doi.org/10.19044/esj.2017.v13n20p206

[37]   Ardoin, B.S., Dezetter, A., Servat, E., Paturel, J.E., Mahé, G., Niel, H. and Dieulin, C. (2009) Using General Circulation Model Outputs to Assess Impacts of Climate Change on Runoff for Large Hydrological Catchments in West Africa. Hydrological Sciences Journal, 54, 77-89.
https://doi.org/10.1623/hysj.54.1.77

[38]   Coulibaly, N., Coulibaly, T.J.H, Mpakama, Z. and Savané, I. (2018) The Impact of Climate Change on Water Resource Availability in a Trans-Boundary Basin in West Africa: The Case of Sassandra. Hydrology, 5, 12.
https://doi.org/10.3390/hydrology5010012

[39]   Hollermann, B., Glertz, S. and Diekkruger, B. (2010) Benin 2025—Balancing Future Water Availability and Demand Using the WEAP “Water Evaluation and Planning” System. Water Resources Management, 24, 3591-3613.
https://doi.org/10.1007/s11269-010-9622-z

[40]   Yates, D., Purkey, D., Sieber, J., Huber-Lee, A. Galbraith, H., West, J., Herrod-Julius, S., Young, C., Joyce, B. and Rayej, M. (2009) Climate Driven Water Resources Model of the Sacramento Basin, California. Water Resource Planning Management, 135, 303-313.
https://doi.org/10.1061/(ASCE)0733-9496(2009)135:5(303)

 
 
Top