[1] Smith, H. (2011) An Introduction to Delay Differential Equations with Applications to the Life Sciences. Vol. 57, Springer, New York.
https://doi.org/10.1007/978-1-4419-7646-8
[2] Kuang, Y. (1992) Delay Differential Equations with Application in Population Dynamics. Springer, New York.
[3] Davis, L.C. (2003) Modifications of the Optimal Velocity Traffic Model to Include Delay Due to Driver Reaction Time. Physica A: Statistical Mechanics and Its Applications, 319, 557-567. https://doi.org/10.1016/S0378-4371(02)01457-7
[4] Beddington, J.R. and Ray, R.M. (1975) Time Delays Are Not Necessarily Destabilizing. Mathematical Biosciences, 27, 109-117.
https://doi.org/10.1016/0025-5564(75)90028-0
[5] Bengea, S.C., Li, X.Q. and DeCarlo, R.A. (2004) Combined Controller-Observer Design for Uncertain Time Delay Systems with Application to Engine Idle Speed Control. Journal of Dynamic Systems Measurement and Control, 126, 772-780.
https://doi.org/10.1115/1.1849239
[6] Franklin, G.F., Powell, J.D. and Emami-Naeini, A. (2005) Feedback Control of Dynamic Systems. Pearson Prentice Hall, Upper Saddle River.
[7] Frost, M.G. (1982) Controllability, Observability and the Transfer Function Matrix for a Delay-Differential System. International Journal of Control, 35, 175-182.
https://doi.org/10.1080/00207178208922610
[8] Belair, J. and Campbell, S.A. (1994) Stability and Bifurcations of Equilibria in a Multiple-Delayed Differential Equation. SIAM Journal on Applied Mathematics, 54, 1402-1424. https://doi.org/10.1137/S0036139993248853
[9] Huang, K.L. and Lu, Q.S. (1995) Some Theorems for a Class of Dynamical System with Delay and Their Applications. Acta Mathematic Application Sinica, 18, 422-428. (in Chinese).
[10] Shi, M. and Wang, Z.H. (2011) An Effective Analytical Criterion for Stability Testing of Fractional-Delay Systems. Automatica, 47, 2001-2005.
https://doi.org/10.1016/j.automatica.2011.05.018
[11] Wang, Z.H. and Hu, H.Y. (1999) Delay-Independent Stability of Retarded Dynamic Systems of Multiple Degrees of Freedom. Journal of Sound and Vibration, 226, 57-81. https://doi.org/10.1006/jsvi.1999.2282
[12] Beretta, E. and Kuang, Y. (2002) Geometric Stability Switch Criteria in Delay Differential Systems with Delay Dependent Parameters. SIAM Journal on Mathematical Analysis, 33, 1144-1165.
https://doi.org/10.1137/S0036141000376086
[13] Cooke, K.L. and van den Driesche, P. (1986) On Zeros of Some Transcendental Equaions. Funkcialaj Ekvacioj, 29, 77-90.
[14] Ma, S.Q., Lu, Q.S. and Mei, S. L. (2005) Dynamics of a Logistic Population Model with Maturation Delay and Nonlinear Birth Rate. Discrete and Continuous Dynamical Systems-B, 5, 735-752. http://dx.doi.org/10.3934/dcdsb.2005.5.735
[15] Aiello, W.G., Freedman, H.I. and Wu, J. (1992) A Model of Stage Structural Population Growth with Density Dependent Time Delay. SIAM Journal on Applied Mathematics, 52, 855-869. https://doi.org/10.1137/0152048
[16] Beretta, E. and Kuang, Y. (2001) Modeling and Analysis of a Marine Bacteriophage Infection with Latency Period. Nonlinear Analysis: Real World Applications, 2, 35-74. https://doi.org/10.1016/S0362-546X(99)00285-0
[17] Ma, S.Q., Feng, Z.S. and Lu, Q.S. (2008) A Two Parameter Criteria for Delay Differential Equations. Discrete & Continuous Dynamical Systems-B, 9, 397-413.
http://dx.doi.org/10.3934/dcdsb.2008.9.397
[18] Ma, S.Q. (2019) Hopf Bifurcation of a Type of Neuron Model with Multiple Time Delays. International Journal of Bifurcation and Chaos, 29, Article ID: 1950163.
https://doi.org/10.1142/S0218127419501633
[19] Xu, J. and Chung, K.W. (2003) Effects of Time Delayed Position Feedback on a Van Der Pol-Duffing Oscillator. Physica D: Nonlinear Phenomena, 180, 17-39.
https://doi.org/10.1016/S0167-2789(03)00049-6
[20] Wang, Z.H., Hu, H.Y., Xu, Q. and Stepan, G. (2016) Effect of Delay Combinations on Stability and Hopf Bifurcation of an Oscillator with Acceleration-Derivative Feedback. International Journal of Nonlinear Mechanics, 94, 392-399.
https://doi.org/10.1016/j.ijnonlinmec.2016.10.008
[21] Hale, J.K. and Lunel, S.M.V. (1993) Introduction of Functional Differential Equations. Springer-Verlag, New York.
https://doi.org/10.1007/978-1-4612-4342-7