Back
 JWARP  Vol.13 No.2 , February 2021
Water Quality Assessment in the Bamoun Plateau, Western-Cameroon: Hydrogeochemical Modelling and Multivariate Statistical Analysis Approach
Abstract: This study focuses on the geochemical and bacteriological investigation of surface and ground water in the Bamoun plateau (Western-Cameroon). During the period from September 2013 to August 2014, 71 samples were collected from two springs, one borehole, four wells and the Nchi stream for analysis of major elements. In order to obtain the characteristics of the various species of bacteria, 7 samples were selected. The analytical method adopted for this study is the conventional hydrochemical technic and multivariate statistical analysis, coupled with the hydrogeochemical modelling. The results revealed that, water from the zone under study are acidic to basic, very weakly to weakly mineralized. Four types of water were identified: 1) CaMg-HCO3; 2) CaMg-Cl-SO4; 3) NaCl-SO4 and 4) NaK-HCO3. The major elements were all listed in the World Health Organization guidelines for drinking water quality, except for nitrates which was found at a concentration > 50 mg /l NO-3 in the borehole F401. As for the hydrobiological aspect, the entire sample contained all the bacteriological species except for spring S301 and well P401. According to the hydrogeochemical modelling, the Gibbs model and multivariate statistical tests, the quality of surface and ground water of the Foumban locality is influenced by two important factors: 1) the natural factors characterized by the water-rock interaction, evapotranspiration/crystallization, 2) the anthropogenic factors such as: uncontrolled discharges of liquid and solid effluents of all kinds and without any prior treatment within the ground and the strong urbanization accompanied by lack of sanitation and insufficient care.
Cite this paper: Mfonka, Z. , Kpoumié, A. , Ngouh, A. , Mouncherou, O. , Nsangou, D. , Rakotondrabe, F. , Takounjou, A. , Zammouri, M. , Ngoupayou, J. and Ndjigui, P. (2021) Water Quality Assessment in the Bamoun Plateau, Western-Cameroon: Hydrogeochemical Modelling and Multivariate Statistical Analysis Approach. Journal of Water Resource and Protection, 13, 112-138. doi: 10.4236/jwarp.2021.132007.
References

[1]   Rakotondrabe, F., Ndam Ngoupayou, J.R., Mfonka, Z., Rasolomanana, E.H., Nyangono Abolo, A.J. and Ako Ako, A. (2018) Water Quality Assessment in the Bétaré-Oya Gold Mining Area (East-Cameroon): Multivariate Statistical Analysis Approach. Science of the Total Environment, 610, 831-844.
https://doi.org/10.1016/j.scitotenv.2017.08.080

[2]   Owoyemi, F.B., Oteze, G.E. and Omonona, O.V. (2019) Spatial Patterns, Geochemical Evolution and Quality of Groundwater in Delta State, Niger Delta, Nigeria: Implication for Groundwater Management. Environment Monitoring and Assessment, 191, 617.
https://doi.org/10.1007/s10661-019-7788-2

[3]   Reinaldy Pratama, P., Tjahyo Nugroho, A., Langgeng Wahyu, S. and Nurul, K. (2020) Hydrogeochemical Conditions in Groundwater Systems with Various Geomorphological Units in Kulonprogo Regency, Java Island, Indonesia. Aquatic Geochemistry, 26, 421-454.

[4]   Sanjoy, S., Umesh Kumar, S. and Pankaj, M. (2019) Water Quality Assessment of a Tropical River Using Water Quality Index (WQI), Multivariate Statistical Techniques and GIS. Applied Water Science, 9, 168.
https://doi.org/10.1007/s13201-019-1045-2

[5]   Liu, J.T., et al. (2019) Hydrochemical Characteristics and Quality Assessment of Groundwater for Drinking and Irrigation Purposes in the Futuan River Basin, China. Arabian Journal of Geosciences, 12, 560.
https://doi.org/10.1007/s12517-019-4732-2

[6]   Mfonka, Z. (2019) Hydrodynamique et vulnérabilité des nappes en zone de socle fissuré et al téré: Cas de la localité de Foumban dans le bassin versant du Nchi (Ouest-Cameroun). PhD Dissertation, University of Yaoundé 1, Yaoundé, 289.

[7]   Okomo Atouba, L.C., Chazot, G., Moundi, A., Agranier, A., Bellon, H., Nonnotte, P., Nzenti, J.-P. and Kankeu, B. (2016) Mantle Sources beneath the Cameroon Volcanic Line: Geochemistry and Geochronology of the Bamoun Plateau Mafic Rocks. Arabian Journal of Geosciences, 9, 1-12.
https://doi.org/10.1007/s12517-015-2285-6

[8]   Ziem, A., Bidias, L.A., Chazot, G., Moundi, A. and Nonnotte, P. (2018) Extreme Source Heterogeneity and Complex Contamination Patterns along the Cameroon Volcanic Line: New Geochemical Data from the Bamoun Plateau. Compte Rendu de Géosciences, 350, 100-109.
https://doi.org/10.1016/j.crte.2017.11.004

[9]   Mfonka, Z., Ndam Ngoupayou, J.R., Ndjigui, P.-D., Kpoumié, A., Zammouri, M., Ngouh, A.N., Mouncherou, O.F., Rakotondrabe, F. and Rasolomanana, E.H. (2018) A GIS-Based DRASTIC and GOD Models for Assessing Alterites Aquifer of Three Experimental Watersheds in Foumban (Western-Cameroon). Groundwater and Sustainable Development, 7, 250-264.
https://doi.org/10.1016/j.gsd.2018.06.006

[10]   Ngo’o Ze, A., Onana, V.L., Ndzié Mvindi, A.T., Nyassa Ohandja, H., Medjo Eko, R. and Ekodeck, G.E. (2019) Variability of Geotechnical Parameters of Lateritic Gravels Overlying Contrasted Metamorphic Rocks in a Tropical Humid Area (Cameroon) Implications for Road Construction. Bulletin of Engineering Geology and Environment, 78, 5531-5549.
https://doi.org/10.1007/s10064-019-01488-0

[11]   Hajji, S., Nasri, G., Boughariou, E., Bahloul, M., Allouche, N. and Bouri, S. (2020) Towards Understanding Groundwater Quality Using Hydrochemical and Statistical Approaches: Case of Shallow Aquifer of Mahdia-Ksour Essaf (Sahel of Tunisia). Environmental Science and Pollution Resources, 27, 5251-5265.
https://doi.org/10.1007/s11356-019-06982-2

[12]   Olivry, J.C. (1986) Fleuves et rivières du Cameroun. MESRES-ORSTOM, monogra- phie hydrologique, Paris, 733.

[13]   Weeksteen (1957) Carte géologique de reconnaissance au 1/500000, feuille Douala-Est avec Notice explicative. Direction des Mines et de la Geology, Cameroun, 35.

[14]   Moundi, A., Wandji, P., Bardintzeff, J.M., Ménard, J.J., Okomo Atouba, L.C., Mouncharou, O.F., Reusser, E., Bellon, H. and Tchoua, F. (2007) Les basaltes éocènes à affinité transitionnelle du plateau Bamoun, témoins d’un réservoir mantellique enrichi sous la ligne volcanique du Cameroun. Compte Rendu de Géosciences, 339, 396-406.
https://doi.org/10.1016/j.crte.2007.04.001

[15]   Tchakounté, J., Eglinger, A., Toteu, S.F., Zeh, A., Nkoumbou, C., Mvondo Ondoa, J., Penaye, J., de Wit, M. and Barbey, P. (2017) The Adamawa-Yadé Domain, a Piece of Archaean Crust in the Neoproterozoic Central African Orogenic Belt (Bafia Area, Cameroon). Precambrian Research, 299, 210-229.
https://doi.org/10.1016/j.precamres.2017.07.001

[16]   Mfonka, Z., Ndam Ngoupayou, J.R., Kpoumie, A., Ndjigui, P.-D., Zammouri, M., Ngouh, A.N., Mouncherou, O.F., Mfochivé, O.F. and Rakotondrabe, F. (2019) Hydrodynamic and Groundwater Vulnerability Assessment of the Shallow Aquifer of the Foumban Locality (Bamoun Plateau, Western-Cameroon). Arabian Journal of Geosciences, 12, 165.
https://doi.org/10.1007/s12517-019-4328-x

[17]   Djeuda Tchapnga, H.B., Ngo Massana, B., Siakeu, J., Tanawa, E. and Temgoua, E. (1999) Modèles de circulation, mécanisme de recharge, et temps de séjour des eaux souterraines des altérites en milieu cristallin: Cas du bassin versant de l’Anga’a, Yaoundé-Cameroun. Collect GIOCAM 2/1999, Ed Sci: VICAT JP, BILONG P, Ed Presses Univ de Ydé, 117-126.

[18]   Lachassagne, P., Wyns, R. and Dewandel, B. (2011) The Fracture Permeability of Hard Rock Aquifers Is Due Neither to Tectonics, Nor to Unloading, But to Weathering Processes. Terra Nova, 10, 1365-3121.
https://doi.org/10.1111/j.1365-3121.2011.00998.x

[19]   Lachassagne, P., Dewandel, B. and Wyns, R. (2015) The Conceptual Model of Hard Rock Aquifers and Its Practical Applications. Vingtièmes journées techniques du Comité FranCais d'Hydrogéologie de l’Association Internationale des Hydrogéo- logues. La Rochesur-Yon. 11.
https://doi.org/10.1201/b17016-3

[20]   Charlier, J.-B., Lachassagne, P., Ladouche, B., Cattan, P., Moussa, R. and Voltz, M. (2011) Structure and Hydrogeological Functioning of an Insular Tropical Humid Andesitic Volcanic Watershed: A Multi-Disciplinary Experimental Approach. Journal of Hydrology, 398, 155-170.
https://doi.org/10.1016/j.jhydrol.2010.10.006

[21]   Guihéneuf, N., Boisson, A., Bour, O., Dewandel, B., Perrin, J., Dausse, A., Viossanges, M., Chandra, S., Ahmed, S. and Maréchal, J.C. (2014) Groundwater Flows in Weathered Crystalline Rocks: Impact of Piezometric Variations and Depth Dependent Fracture Connectivity. Journal of Hydrology, 511, 320-334.
https://doi.org/10.1016/j.jhydrol.2014.01.061

[22]   Rodier, J. (2009) Analyse de l’eau. Dunod, 9th Edition, Paris, 1579.

[23]   Mfonka, Z., Ndam Ngoupayou, J.R., Ndjigui, P.-D., Zammouri, M., Kpoumie, A. and Rasolonana, E. (2015) Hydrochimie et potabilité des eaux du bassin versant du Nchi dans le plateau Bamoun (Ouest Cameroun). International Journal of Biological and Chemical Sciences, 9, 2000-2018.
https://doi.org/10.4314/ijbcs.v9i4.39

[24]   Rakotondrabe, F., Ndam Ngoupayou, J.R., Mfonka, Z., Rasolomanana, E.H., Nyangono Abolo, A.J., Banakeng, L.A., Ako Ako, A. and Rakotondrabe, M.H. (2017) Assessment of Surface Water Quality of Bétaré-Oya Gold Mining Area (East-Cameroon). Journal of Water Resource and Protection, 9, 960-984.
https://doi.org/10.4236/jwarp.2017.98064

[25]   Khosravi, R., Zarei, M. and Bigalke, M. (2018) Characterizing Major Controls on Spatial and Seasonal Variations in Chemical Composition of Surface and Pore Brine of Maharlu Lake, Southern Iran. Aquatic Geochemistry, 24, 27-54.
https://doi.org/10.1007/s10498-018-9329-y

[26]   Hosseini, H., Shakeri, A., Rezaei, M., Dashti Barmaki, M. and Rastegari Mehr, M. (2020) Water Chemistry and Water Quality Pollution Indices of Heavy Metals: A Case Study of Chahnimeh Water Reservoirs, Southeast of Iran. International Journal of Energy and Water Resource, 4, 63-79.
https://doi.org/10.1007/s42108-019-00051-7

[27]   Akrong, M., Amu Mensah, F., Amu Mensah, M., Darko, H., Addico, G. and Ampofo, J. (2019) Seasonal Analysis of Bacteriological Quality of Drinking Water Sources in Communities Surrounding Lake Bosomtwe in the Ashanti Region of Ghana. Applied Water Science, 9, 82.
https://doi.org/10.1007/s13201-019-0959-z

[28]   Wali, S.U., Jega, U.K., Sheikh Danjuma, A., Ifabiyi Ifatokun, P., Dankani, I.M., Shera, I.M. and Garba Yauri, S. (2019) Hydrochemical Characterization of Shallow and Deep Groundwater in Basement Complex Areas of Southern Kebbi State, Sokoto Basin, Nigeria. Applied Water Science, 9, 169.
https://doi.org/10.1007/s13201-019-1042-5

[29]   Singh, C.K., Anand, K., Shashtri, S., Alok, K., Pankaj, K. and Mallick, J. (2017) Multivariate Statistical Analysis and Geochemical Modeling for Geochemical Assessment of Groundwater of Delhi, India. Journal of Geochemical Exploration, 175, 59-71.
https://doi.org/10.1016/j.gexplo.2017.01.001

[30]   Yang, P., Cheng, Q., Xie, S., Wang, J., Chang, J., Yu, Q., Zhan, Z. and Chen, F. (2017) Hydrogeochemistry and Geothermometry of Deep Thermal Water in the Carbonate Formation in the Main Urban Area of Chongqing, China. Journal of Hydrology, 549, 50-61.
https://doi.org/10.1016/j.jhydrol.2017.03.054

[31]   Kim, J.H., Kim, R.H., Lee, J. and Chang, H.W. (2003) Hydrogeochemical Characterization of Major Factors Affecting the Quality of Shallow Groundwater in the Coastal Area at Kimje in South Korea. Environmental Geology, 44, 478-489.
https://doi.org/10.1007/s00254-003-0782-5

[32]   Zhang, Y., Xu, M., Li, X., Qi, J., Zhang, Q., Guo, J., Yu, L. and Zhao, R. (2018) Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China. Water, 10, 80.
https://doi.org/10.3390/w10010080

[33]   Shawgar, K., Mohammad, J., Homayoon, K. and Ahmadn, F.M. (2020) Groundwater Hydrogeochemical Assessment Using Advanced Spatial Statistics Methods: A Case Study of Tehran-Karaj Plain Aquifer, Iran. Arabian Journal of Geosciences, 13, 84.
https://doi.org/10.1007/s12517-019-5047-z

[34]   Pawan, K., Ambrish, K. and Mahajan Anil, K. (2020) Groundwater Geochemical facie: Implications of Rock-Water Interaction at the Chamba City (HP), Northwest Himalaya, India. Environmental Science and Pollution Research, 27, 9012-9026.
https://doi.org/10.1007/s11356-019-07078-7

[35]   Everitt, B.S. and Hothorn, T. (2011) An Introduction to Applied Multivariate Analysis with R. Springer, New York.

[36]   Roques, C., Aquilina, L., Bour, O., Maréchal, J.-C., Dewandel, B., Pauwels, H., Labasque, T. and Vergnaud-Ayraud, V. (2014) Groundwater Sources and Geochemical Processes in a Crystalline Fault Aquifer. Journal of Hydrology, 519, 3110-3128.
https://doi.org/10.1016/j.jhydrol.2014.10.052

[37]   Cloutier, V., Lefebvre, R., Therrien, R. and Savard, M.M. (2008) Multivariate Statistical Analysis of Geochemical Data as Indicative of the Hydrogeochemical Evolution of Groundwater in a Sedimentary Rock Aquifer System. Journal of Hydrology, 353, 294-313.
https://doi.org/10.1016/j.jhydrol.2008.02.015

[38]   Tanaskovic, I., Golobocanin, D. and Miljevic, N. (2012) Multivariate Statistical Analysis of Hydrochemical and Radiological Data of Serbian Spa Waters. Journal of Geochemical Exploration, 112, 226-234.
https://doi.org/10.1016/j.gexplo.2011.08.014

[39]   Matiatos, I., Alexopoulos, A. and Godelitsas, A. (2014) Multivariate Statistical Analysis of the Hydrogeochemical and Isotopic Composition of the Groundwater Resources in Northeastern Peloponnesus (Greece). Science of the Total Environment, 476, 577-590.
https://doi.org/10.1016/j.scitotenv.2014.01.042

[40]   Gibbs, R.J. (1970) Mechanisms Controlling World Water Chemistry. Science, 17, 1088-1090.
https://doi.org/10.1126/science.170.3962.1088

[41]   Detay, M. (1993) Le forage d’eau, réalisation, entretien, réhabilitation. Masson, Paris, 375.

[42]   Boeglin, J.L., Ndam Ngoupayou, J.R. and Braun, J.J. (2003) Composition of the Different Reservoir Waters in a Tropical Humid Area: Example of the Nsimi Catchment (Southern Cameroon). Journal of African Earth Science, 37, 103-110.
https://doi.org/10.1016/S0899-5362(03)00041-1

[43]   Piper, A.M. (1944) A Graphic Procedure in the Geochemical Interpretation of Water-Analyses. EOS, Transactions American Geophysical Union, 25, 914-928.
https://doi.org/10.1029/TR025i006p00914

[44]   Tiodjio, E.R., Fantong, Y.W., Tchakam Kamtchueng, B., Tanyileke, G., Takeshi, O., Hell, J.V., Kusakabe, M., Nakamura, S. and Ueda, A. (2015) Bacteriological Assessment of Drinking Water Sources in the Vicinities of Lakes Nyos and Monoun (Cameroon, Central Africa). Journal of Environmental Science and Water Resource, 4, 60-70.
https://doi.org/10.1038/srep06151

[45]   Kringel, R., Rechenburg, A., Kuitcha, D., Fouépé, A., Bellenberg, S., Kengne, I.M. and Fomo, M.A. (2017) Mass Balance of Nitrogen and Potassium in Urban Groundwater in Central Africa, Yaounde/Cameroon. Science of the Total Environment, 547, 382-395.
https://doi.org/10.1016/j.scitotenv.2015.12.090

[46]   Xing, L., Guo, H. and Zhan, Y. (2013) Groundwater Hydrochemical Characteristics and Processes along Flow Paths in the North China Plain. Journal of Asian Earth Science, 70, 250-264.
https://doi.org/10.1016/j.jseaes.2013.03.017

[47]   Nguyen, T.T., Kawamura, A., Tong, T.N., Nakagawa, N. and Gilbuenan, J.R. (2014) Hydrogeochemical Characteristics of Groundwater from the Two Main Aquifers in the Red River Delta, Vietnam. Journal of Asian Earth Science, 93, 180-192.
https://doi.org/10.1016/j.jseaes.2014.07.035

[48]   Ghouili, N., Hamzaoui-Azaza, F., Zammouri, M., Zaghrarni, M.F., Horriche, F.J. and Condesso de Melo, M.T. (2018) Groundwater Quality Assessment of the Takelsa Phreatic Aquifer (Northeastern Tunisia) Using Geochemical and Statistical Methods: Implications for Aquifer Management and End-Users. Environmental Science and Pollution Research, 25, 36306-36327.
https://doi.org/10.1007/s11356-018-3473-1

[49]   Zghibi, A., Merzougui, A., Zouhri, L. and Tarhouni, J. (2014) Understanding Groundwater Chemistry Using Multivariate Statistics Techniques to the Study of Contamination in the Korba Unconfined Aquifer System of Cap-Bon (North-East of Tunisia). Journal of African Earth Science, 89, 1-15.
https://doi.org/10.1016/j.jafrearsci.2013.09.004

[50]   Chihi, H., de Marsily, G., Belayouni, H. and Yahyaoui, H. (2015) Relationship between Tectonic Structures and Hydrogeochemical Compartmentalization in Aquifers: Example of the “Jeffara de Medenine” System, South-East Tunisia. Journal of Hydrology: Regional Studies, 4, 410-430.
https://doi.org/10.1016/j.ejrh.2015.07.004

[51]   Dewandel, B., Lachassagne, P., Wyns, R., Marechal, J.C. and Krishnamurthy, N.S. (2006) A Generalized 3-D Geological and Hydrogeological Conceptual Model of Granite Aquifers Controlled by Single or Multiphase Weathering. Hydrology Journal, 330, 260-284.
https://doi.org/10.1016/j.jhydrol.2006.03.026

 
 
Top