CSTA  Vol.10 No.1 , February 2021
Structural Study, Vibrational, Optical, Thermal Properties and Hirshfeld Surface Analysis of a New Iron (III) Complex: FeCl4(C5N2H6)(C5N2H5)
Abstract: The title compound, FeCl4(C5N2H6)(C5N2H5) consists of two [(C5N2H6) (C5N2H5)]+ organic cations and [FeCl4]- anion. The geometry of the iron ion is tetrahedral, formed by four chlorine atoms. The complex was characterized by single crystal X-ray diffraction, Fourier Transform Infrared spectroscopy, thermal analysis and UV-Visible spectroscopy. Hirshfeld surface analysis was also used for understanding the intermolecular interactions in the crystal packing. Single-crystal X-ray diffraction analysis indicates that this complex crystallizes in the monoclinic system, P21/c space group with a = 7.598 (3) Å, b = 13.694 (4) Å, c = 17.105 (5) Å, β = 97.203 (6)° V = 1765.7 (10) Å3 and Z = 4. The [FeCl4]- anion and [(C5N2H6)(C5N2H5)]+ cations are linked through three-dimensional hydrogen-bonding network consisting of N-H...Cl and π-π interactions. Hirshfeld surface analysis and the related 2D fingerprint plots reveal that the complex is dominated by N-H...Cl contacts.
Cite this paper: Arouri, A. , Dridi, R. , Kefi, R. and Zid, M. (2021) Structural Study, Vibrational, Optical, Thermal Properties and Hirshfeld Surface Analysis of a New Iron (III) Complex: FeCl4(C5N2H6)(C5N2H5). Crystal Structure Theory and Applications, 10, 14-26. doi: 10.4236/csta.2021.101002.

[1]   Dong, Q., Wang, H., Liu, Q., Ji, S., Zhang, Y., Tang, C., Wang, X. and Wang, R. (2020) Simplifying the Creation of Iron Compound Inserted, Nitrogen-Doped Carbon Nanotubes and Its Catalytic Application. Journal of Alloys and Compounds, 857, Article ID: 157543.

[2]   Tavallali, V., Rowshan, V., Gholami, H. and Hojat, S. (2020) Iron-Urea Nano-Complex Improves Bioactive Compounds in Essential Oils of Ocimum basilicum L. Scientia Horticulturae, 265, Article ID: 109222.

[3]   Caetano-Silva, M.E., Alves, R.C., Lucena, G.N., Galvão Frem, R.C., Bertoldo-Pacheco, M.T., Azevedo Lima-Pallone, J. and Netto, F.M. (2017) Synthesis of Whey Peptide-Iron Complexes: Influence of Using Different Iron Precursor Compounds. Food Research International, 101, 73-81.

[4]   Fadeeva, I.V., Trofimchuk, E.S., Dedushenko, S.K., Fomina, A.S., Davydova, G.A., Selezneva, I.I., Perfiliev, Y.D. and Barinov, S.M. (2019) Methylcellulose Films Partially Crosslinked by Iron Compounds for Medical Applications. Materials Today Communications, 18, 54-59.

[5]   Benamrane, A., Herry, B., Vieru, V., Chakraborty, S., Biswas, S., Prince, S., Marschner, C. and Blom, B. (2020) Ionic Ruthenium and Iron Based Complexes Bearing Silver Containing Anions as a Potent New Class of Anticancer Agents. Journal of Organometallic Chemistry, 934, Article ID: 121659.

[6]   Rebellato, A.P., Klein, B., Wagner, R. and Azevedo Lima Pallone, J. (2018) Fortification Effects of Different Iron Compounds on Refined Wheat Flour Stability. Journal of Cereal Science, 82, 1-7.

[7]   Hanket, T., Brunne, R.M., Müller, H. and Reichel, F. (1999) Statistical Investigation into the Structural Complementarity of Natural Products and Synthetic Compounds. Angewandte Chemie International Edition, 38, 643-647.<643::AID-ANIE643>3.0.CO;2-G

[8]   Henry, G.D. (2004) De Novo Synthesis of Substituted Pyridines. Tetrahedron, 60, 6043-6061.

[9]   Janiak, C. (2000) A Critical Account on Pep Stacking in Metal Complexes with Aromatic Nitrogen-Containing Ligands. Journal of the Chemical Society, 21, 3885-3896.

[10]   Desiraju, G.R. (2005) C-H/…O and Other Weak Hydrogen Bonds. From Crystal Engineering to Virtual Screening. Chemical Communications, 24, 2995-3001.

[11]   Sun, H.S., Xu, Y.M., He, W., Tang, S.G. and Guo, C. (1989) (Z)-5-(4-Fluoro benzyl idene)-1,3-thia Zolidine-2,4-dione, Enraf Nonius, CAD4, Solfware, Version 5.0.

[12]   Burla, M.C., Caliandro, R., Carrozzini, B., Cascarano, G.L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. and Polidori, G. (2014) Crystal Structure Determination and Refinement via SIR 2014. Journal of Applied Crystallography, 48, 306-309.

[13]   Sheldrick, G.M. (2015) Crystal Structure Refinement with SHELXL. Acta Crystallographica C, 71, 3-8.

[14]   North, A.C.T., Phillips, D.C. and Mathews, F.S. (1968) A Semi-Empirical Method of Absorption Correction. Acta Crystallographica Section A, 24, 351-359.

[15]   Brandenburg, K. (1998) Diamond, Version 3.2. Crystal Impact GbR, Bonn.

[16]   Jellali, A., Hamdi, B., Samet, A. and Zouari, R. (2018) Experimental, Theoretical, Characterization and Optical Investigation of a New Hybrid Material (8-HQ)2[FeCl4]Cl. Journal of Molecular Structure, 1171, 305-314.

[17]   Hammami, I., Dhifallah, F., Ouari, K., Belkhiria, M.S. and Nasri, H. (2018) A New Assembly of a Wells-Dawson Polyoxometalate-Based Iron(III) Coordination Complex Hybrid: Synthesis, Crystal Structure, Thermal and Electrochemical Properties. Polyhedron, 160, 63-67.

[18]   Baur, W.H. (1974) The Geometry of Polyhedral Distortions. Predictive Relationships for the Phosphate Group. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 30, 1195-1215.

[19]   Chérif, I., Abdelhak, J., Zid, M.F. and Driss, A. (2012) 2-Amino-5-chloropyridinium Cis-diaquadioxalatochromate(III) Sesquihydrate. Acta Crystallographica Section E Structure Reports Online, 68, m824-m825.

[20]   Larson, A.C. and Von Dreele, R.B. (2000) General Structure Analysis System (GSAS) Report LAUR 86-748. Los Alamos National Laboratory, Los Alamos.

[21]   Toby, B.H. (2001) EXPGUI, Graphical User Interfaces for GSAS. Journal of Applied Crystallography, 34, 210-213.

[22]   Kvick, A., Thomas, R. and Koetzle, T.F. (1976) Hydrogen Bond Studies. CI. A Neutron Diffraction Study of 2-Amino-5-chloropyridine. Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, 32, 224-231.

[23]   Muthu, S. and Renuga, S. (2014) Vibrational Spectra and Normal Coordinate Analysis of 2-Hydroxy-3-(2-methoxyphenoxy) Propyl Carbamate. Spectrochimica Acta Part A, 132, 313-325.

[24]   Madhankumar, S., Muthuraja, P. and Dhandapanin, M. (2019) Physico-Chemical Characterization and Computational Studies of a New Organic Adduct 3-Amino- 2-chloropyridine: Benzilic Acid, Crystal for Third Order Harmonic Generation. Journal of Molecular Structure, 1203, Article ID: 127415.

[25]   Suthan, T., Rajesha, N.P., Mahadevan, C.K. and Bhagavannarayana, G. (2011) Studies on Crystal Growth and Physical Properties of 2-Amino-5-chloropyridine Single Crystal. Materials Chemistry and Physics, 129, 433-438.

[26]   Garci, F., Ferjani, H., Chebbi, H., Ben Jomaa, M. and Zid, M.F. (2019) Crystal Structure, Hirshfeld Surface Analysis and Physicochemical Characterization of Bis[4-(di- methylamino)pyridinium]di-μ-chlorido-bis[dichloridomercurate(II)]. Acta Crystallographica Section E, 75, 1600-1606.

[27]   Dobrzynska, D., Jerzykiewicz, L.B., Duczmal, M. and Wojciechowska, A. (2011) Synthesis, Structure, Magnetic and Spectroscopic Properties of Chromium(III) Complex with Quinoline-2-Carboxylate Ion. Polyhedron, 30, 2684-2689.

[28]   Sreekanth, A., Fun, H.K. and Prathapachandra Kurup, M.R. (2005) Structural and Spectral Studies of an Iron(III) Complex [Fe(Pranthas)2][FeCl4] Derived from 2-Ace- tylpyridine-N(4)N(4)-(butane-1,4-diyl)thiosemicarbazone (HPranthas). Journal of Molecular Structure, 737, 61-67.

[29]   Selmi, W., Abdelhak, J., Arfaoui, A., Amri, H., Boujlel, K., Zid, M.F. and Driss, A. (2014) Oxalate-Bridged Binuclear Iron(III) Complexes of 3,5-Dimethylpyrazole Ligands: Synthesis, Structure, Spectral and Electrochemical Properties. International Journal of Chemical Engineering, 31, 2051-6051.

[30]   Rosencher, E. and Vinter, B. (2002) Optoelectronics. Cambridge University Press, Cambridge.

[31]   Dgachi, S., Turnbull, M.M., Mezzadri, F., Norquist, A.J., Soran A., Boonmak, J., Nemes, G. and Naïli, H. (2020) Polymorphism in the Metal-Organic Hybrid (PhCH2NEt3)2[CoBr4]: Synthesis, Crystal Structures and Physico-Chemical Characterizations. Inorganica Chimica Acta, 514, Article ID: 119997.

[32]   Hfdhi, N., Krayem, N., Erwann, J., Bataille, T. and Naïli, H. (2020) Lamellar and Supramolecular Feature of New Tutton’s Salts Incorporating 2-Amino-4-Methylpyrimidine: Thermal Stability, Optic Study, Antioxidant and Antimicrobial Activities. Journal of Inorganic and Organometallic Polymers and Materials.

[33]   Maatar Ben Salah, A., Herrera, R.P. and Naïli, H. (2018) Hydrothermal Synthesis of Chiral Inorganic-Organic Co II Complex: Structural, Thermal and Catalytic Evaluation. Journal of Molecular Structure, 1165, 356-362.

[34]   Spackman, M.A. and McKinnon, J.J. (2002) Fingerprinting Intermolecular Interactions in Molecular Crystals. CrystEngComm, 4, 378-392.

[35]   McKinnon, J.J., Spackman, M.A. and Mitchell, A.S. (2004) Novel Tools for Visualizing and Exploring Intermolecular Interactions in Molecular Crystals. Acta Crystallographica, 60, 627-668.

[36]   Rohl, A.L., Moret, M., Kaminsky Clabron, W.K., Mckinnon, J.J. and Kahr, B. (2008) Hirshfeld Surfaces Identify Inadequacies in Computations of Intermolecular Interactions in Crystals: Pentamorphic 1,8-Dihydroxyanthraquinone. Crystal Growth & Design, 12, 4517-4525.

[37]   Ben Moussa, O., Chebbi, H. and Zid, M.F. (2019) Synthesis, Crystal Structure, Vibrational Study, Optical Properties and Hirshfeld Surface Analysis of Bis(2,6- diaminopyridinium) Tetrachloridocobaltate(II) Monohydrate. Journal of Molecular Structure, 1180, 72-80.