Back
 MSA  Vol.12 No.2 , February 2021
Effect of Durian Peel Ash Added in Zinc Oxide/Reduced Graphene Oxide Composites Used as a Chemical Sensor for Hydrazine Detection
Abstract: As the hydrazine is toxic, the methods to detect hydrazine at low concentrations are essential in scientific research. This preliminary study reported on how to increase the efficiency of ZnO/reduced graphene oxide (rGO) by adding durian peel ash (DPA) and using three-electrode method. The ZnO/rGO composites were prepared using chemical reaction of graphene oxide (GO) with zinc chloride. The rGO was prepared by the chemical reduction of GO using hydrazine. The properties of the samples were investigated using scanning electron microscopy, atomic force microscopy, X-ray diffraction, and Potentiostat/Galvanostat. The results showed that the optimal condition for the composite material was 70%DPA:30%ZnO/rGO with the sensitivity of 222.92 mA/mM·cm2 and the current density up to 116.50 ± 0.95 A/g. The relationship between the current and the hydrazine concentration was I (μA) = 48.69 + 21.91C (mM) with R2 of 0.9870. The minimum concentration of hydrazine solution that the modified electrode can measure was 0.125 mM. The DPA powder can then be used to enhance the hydrazine detection efficiency at low concentrations.
Cite this paper: Rattanaveeranon, S. , Jiamwattanapong, K. and Jandee, N. (2021) Effect of Durian Peel Ash Added in Zinc Oxide/Reduced Graphene Oxide Composites Used as a Chemical Sensor for Hydrazine Detection. Materials Sciences and Applications, 12, 111-120. doi: 10.4236/msa.2021.122007.
References

[1]   Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Electric Field Effect in Atomically Thin Carbon Films. Nature, 306, 666-669.
https://doi.org/10.1126/science.1102896

[2]   Geim, A.K. and Kim, P. (2008) Carbon Wonderland. Scientific American, 298, 90.
https://doi.org/10.1038/scientificamerican0408-90

[3]   Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R. and Kim, K.S. (2012) Functionalization of Graphene: Covalent Andnon-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112, 6156-6214.
https://doi.org/10.1021/cr3000412

[4]   Groenendaal, L.B., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J.R. (2000) Poly(3,4-ethylenedioxythiophene) and It’s Derivatives: Past, Present, and Future. Advanced Materials, 12, 481-494.
https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C

[5]   Matsumoto, K. (2007) High-Pressure Synthesis of Heterocycles Related to Bioactive Molecules. In: Bioactive Heterocycles II, Springer, Berlin, 1-42.
https://doi.org/10.1007/7081_2007_058

[6]   Sheng, Q.L., Yu, H. and Zheng, J.B. (2007) Sol-Gel Derived Carbon Ceramic Electrode for the Investigation of the Electrochemical Behavior and Electrocatalytic Activity of Neodymium Hexacyanoferrate. Electrochimica Acta, 52, 4506-4512.
https://doi.org/10.1016/j.electacta.2006.12.047

[7]   Noroozifar, M., Motlagh, M.K. and Taheri, A. (2009) Preparation of Silver Hexacyanoferrate Nanoparticles and Its Application for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta, 80, 1657-1664.
https://doi.org/10.1016/j.talanta.2009.10.005

[8]   Hosseinzadeh, R., Sabzi, R.E. and Ghasemlu, K. (2009) Effect of Cetyltrimethyl Ammonium Bromide (CTAB) in Determination of Dopamine and Ascorbic Acid Using Carbon Paste Electrode Modified with Tin Hexacyanoferrate. Colloids and Surfaces B: Biointerfaces, 68, 213-217.
https://doi.org/10.1016/j.colsurfb.2008.10.012

[9]   Lin, K.C., Hong, C.P. and Chen, S.M. (2012) Electrocatalytic Oxidation of Alcohols, Sulfides and Hydrogen Peroxide Based on Hybrid Composite of Ruthenium Hexacyanoferrate and Multi-Walled Carbon Nanotubes. International Journal of Electrochemical Science, 7, 11426-11443.

[10]   Zhou, D.M., Ju, H.X. and Chen, H.Y. (1996) Catalytic Oxidation of Dopamine at a Microdisk Platinum Electrode Modified by Electrodeposition of Nickel Hexacyanoferrate and Nafion. Journal of Electroanalytical Chemistry, 408, 219.
https://doi.org/10.1016/0022-0728(95)04522-8

[11]   Pauliukaite, R., Ghica, M.E. and Brett, C.M.A. (2005) A New Improved Sensor for Ascorbate Determination Copper Hexacyanoferrate Modified Carbon Film Electrodes. Analytical and Bioanalytical Chemistry, 381, 972-978.
https://doi.org/10.1007/s00216-004-2958-6

[12]   Vittal, R., Gomathi, H. and Kim, K.J. (2006) Beneficial Role of Surfactants in Electrochemistry and in the Modification of Electrodes. Advances in Colloid and Interface Science, 119, 55-68.
https://doi.org/10.1016/j.cis.2005.09.004

[13]   Wang, Y., Wan, Y. and Zhang, D. (2010) Reduced Graphene Sheets Modified Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydrazine in Alkaline Media. Electrochemistry Communications, 12, 187-190.
https://doi.org/10.1016/j.elecom.2009.11.019

[14]   Ahmar, H., Keshipour, S., Hosseini, H., Fakhari, A.R., Shaabani, A. and Bagheri, A. (2013) Electrocatalytic Oxidation of Hydrazine at Glassy Carbon Electrode Modified with Ethylenediamine Cellulose Immobilized Palladium Nanoparticles. Journal of Electroanalytical Chemistry, 690, 96-103.
https://doi.org/10.1016/j.jelechem.2012.11.031

[15]   Watt, G.W. and Chrisp, J.D. (1952) Spectrophotometric Method for Determination of Hydrazine. Journal of Analytical Chemistry, 24, 2006-2008.
https://doi.org/10.1021/ac60072a044

[16]   Safavi, A. and Karimi, M.A. (2002) Flow Injection Chemiluminescence Determination of Hydrazine by Oxidation with Chlorinated Isocyanurates. Talanta, 16, 785-792.
https://doi.org/10.1016/S0039-9140(02)00362-4

[17]   Sun, M., Bai, L. and Liu, D.Q. (2009) A Generic Approach for the Determination of Trace Hydrazine in Drug Substances Using in Situderivatization-Headspace GC-MS. Journal of Pharmaceutical and Biomedical Analysis, 49, 529-533.
https://doi.org/10.1016/j.jpba.2008.11.009

[18]   Kolodziejczak-Radzimska, A. and Jesionowski, T. (2014) Zinc Oxide-From Synthesis to Application: A Review. Materials, 7, 2833-2881.
https://doi.org/10.3390/ma7042833

[19]   Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W. and Liu, B. (2011) Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electro Chemical Power Sources. Journal of Materials Chemistry, 21, 6494-6497.
https://doi.org/10.1039/c1jm10239g

[20]   Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R. and Kim, K.S. (2012) Functionalization of Graphene: Covalent Andnon-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112, 6156-6214.
https://doi.org/10.1021/cr3000412

[21]   Groenendaal, L.B., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J.R. (2000) Poly(3,4-ethylenedioxythiophene) and It’s Derivatives: Past, Present, and Future. Advanced Materials, 12, 481-494.
https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C

[22]   Matsumoto, K. (2007) High-Pressure Synthesis of Heterocycles Related to Bioactive Molecules. In: Bioactive Heterocycles II, Springer, Berlin, 1-42.
https://doi.org/10.1007/7081_2007_058

[23]   Sheng, Q.L., Yu, H. and Zheng, J.B. (2007) Sol-Gel Derived Carbon Ceramic Electrode for the Investigation of the Electrochemical Behavior and Electrocatalytic Activity of Neodymium Hexacyanoferrate. Electrochimica Acta, 52, 4506-4512.
https://doi.org/10.1016/j.electacta.2006.12.047

[24]   Noroozifar, M., Motlagh, M.K. and Taheri, A. (2009) Preparation of Silver Hexacyanoferrate Nanoparticles and Its Application for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta, 80, 1657-1664.
https://doi.org/10.1016/j.talanta.2009.10.005

[25]   Hosseinzadeh, R., Sabzi, R.E. and Ghasemlu, K. (2009) Effect of Cetyltrimethyl Ammonium Bromide (CTAB) in Determination of Dopamine and Ascorbic Acid Using Carbon Paste Electrode Modified with Tin Hexacyanoferrate. Colloids and Surfaces B: Biointerfaces, 68, 213-217.
https://doi.org/10.1016/j.colsurfb.2008.10.012

[26]   Lin, K.C., Hong, C.P. and Chen, S.M. (2012) Electrocatalytic Oxidation of Alcohols, Sulfides and Hydrogen Peroxide Based on Hybrid Composite of Ruthenium Hexacyanoferrate and Multi-Walled Carbon Nanotubes. International Journal of Electrochemical Science, 7, 11426-11443.

[27]   Zhou, D.M., Ju, H.X. and Chen, H.Y. (1996) Catalytic Oxidation of Dopamine at a Microdisk Platinum Electrode Modified by Electrodeposition of Nickel Hexacyanoferrate and Nafion. Journal of Electroanalytical Chemistry, 408, 219.
https://doi.org/10.1016/0022-0728(95)04522-8

[28]   Pauliukaite, R., Ghica, M.E. and Brett, C.M.A. (2005) A New Improved Sensor for Ascorbate Determination Copper Hexacyanoferrate Modified Carbon Film Electrodes. Analytical and Bioanalytical Chemistry, 381, 972-978.
https://doi.org/10.1007/s00216-004-2958-6

[29]   Vittal, R., Gomathi, H. and Kim, K.J. (2006) Beneficial Role of Surfactants in Electrochemistry and in the Modification of Electrodes. Advances in Colloid and Interface Science, 119, 55-68.
https://doi.org/10.1016/j.cis.2005.09.004

[30]   Wang, Y., Wan, Y. and Zhang, D. (2010) Reduced Graphene Sheets Modified Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydrazine in Alkaline Media. Electrochemistry Communications, 12, 187-190.
https://doi.org/10.1016/j.elecom.2009.11.019

[31]   Ahmar, H., Keshipour, S., Hosseini, H., Fakhari, A.R., Shaabani, A. and Bagheri, A. (2013) Electrocatalytic Oxidation of Hydrazine at Glassy Carbon Electrode Modified with Ethylenediamine Cellulose Immobilized Palladium Nanoparticles. Journal of Electroanalytical Chemistry, 690, 96-103.
https://doi.org/10.1016/j.jelechem.2012.11.031

[32]   Watt, G.W. and Chrisp, J.D. (1952) Spectrophotometric Method for Determination of Hydrazine. Journal of Analytical Chemistry, 24, 2006-2008.
https://doi.org/10.1021/ac60072a044

[33]   Safavi, A. and Karimi, M.A. (2002) Flow Injection Chemiluminescence Determination of Hydrazine by Oxidation with Chlorinated Isocyanurates. Talanta, 16, 785-792.
https://doi.org/10.1016/S0039-9140(02)00362-4

[34]   Sun, M., Bai, L. and Liu, D.Q. (2009) A Generic Approach for the Determination of Trace Hydrazine in Drug Substances Using in Situderivatization-Headspace GC-MS. Journal of Pharmaceutical and Biomedical Analysis, 49, 529-533.
https://doi.org/10.1016/j.jpba.2008.11.009

[35]   Kolodziejczak-Radzimska, A. and Jesionowski, T. (2014) Zinc Oxide-From Synthesis to Application: A Review. Materials, 7, 2833-2881.
https://doi.org/10.3390/ma7042833

[36]   Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W. and Liu, B. (2011) Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electro Chemical Power Sources. Journal of Materials Chemistry, 21, 6494-6497.
https://doi.org/10.1039/c1jm10239g

[37]   Zhu, Z., Li, A., Zhong, S., Liu, F. and Zhang, Q. (2008) Preparation and Characterization of Polymer-Based Spherical Activated Carbons with Tailored Pore Structure. Journal of Applied Polymer Science, 109, 1692-1698.
https://doi.org/10.1002/app.28304

[38]   Babitha, K.B., Matilda, J.J., Mohamed, A.P. and Ananthakumar, S. (2015) Catalytically Engineered Reduced Graphene Oxide/ZnO Hybrid Nanocomposites for the Adsorption, Photoactivity and Selective Oil Pick-Up from Aqueous Media. RSC Advances, 5, 50223-50233.
https://doi.org/10.1039/C5RA04850H

[39]   Ribeiro, D.V., Souza, C.A.C. and Abrantes, J.C.C. (2015) Use of Electrochemical Impedance Spectroscopy (EIS) to Monitoring the Corrosion of Reinforced Concrete. Revista IBRACON de Estruturas e Materiais, 8, 529-546.
https://doi.org/10.1590/S1983-41952015000400007

[40]   Xu, A., Weng, Y. and Zhao, R. (2020) Permeability and Equivalent Circuit Model of Ionically Conductive Mortar Using Electrochemical Workstation. Materials, 13, 1179.
https://doi.org/10.3390/ma13051179

[41]   Novoselov, K.S., Geim, A.K., Morosov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Electric Field Effect in Atomically Thin Carbon Films. Nature, 306, 666-669.
https://doi.org/10.1126/science.1102896

[42]   Geim, A.K. and Kim, P. (2008) Carbon Wonderland. Scientific American, 298, 90.
https://doi.org/10.1038/scientificamerican0408-90

[43]   Georgakilas, V., Otyepka, M., Bourlinos, A.B., Chandra, V., Kim, N., Kemp, K.C., Hobza, P., Zboril, R. and Kim, K.S. (2012) Functionalization of Graphene: Covalent Andnon-Covalent Approaches, Derivatives and Applications. Chemical Reviews, 112, 6156-6214.
https://doi.org/10.1021/cr3000412

[44]   Groenendaal, L.B., Jonas, F., Freitag, D., Pielartzik, H. and Reynolds, J.R. (2000) Poly(3,4-ethylenedioxythiophene) and It’s Derivatives: Past, Present, and Future. Advanced Materials, 12, 481-494.
https://doi.org/10.1002/(SICI)1521-4095(200004)12:7<481::AID-ADMA481>3.0.CO;2-C

[45]   Matsumoto, K. (2007) High-Pressure Synthesis of Heterocycles Related to Bioactive Molecules. In: Bioactive Heterocycles II, Springer, Berlin, 1-42.
https://doi.org/10.1007/7081_2007_058

[46]   Sheng, Q.L., Yu, H. and Zheng, J.B. (2007) Sol-Gel Derived Carbon Ceramic Electrode for the Investigation of the Electrochemical Behavior and Electrocatalytic Activity of Neodymium Hexacyanoferrate. Electrochimica Acta, 52, 4506-4512.
https://doi.org/10.1016/j.electacta.2006.12.047

[47]   Noroozifar, M., Motlagh, M.K. and Taheri, A. (2009) Preparation of Silver Hexacyanoferrate Nanoparticles and Its Application for the Simultaneous Determination of Ascorbic Acid, Dopamine and Uric Acid. Talanta, 80, 1657-1664.
https://doi.org/10.1016/j.talanta.2009.10.005

[48]   Hosseinzadeh, R., Sabzi, R.E. and Ghasemlu, K. (2009) Effect of Cetyltrimethyl Ammonium Bromide (CTAB) in Determination of Dopamine and Ascorbic Acid Using Carbon Paste Electrode Modified with Tin Hexacyanoferrate. Colloids and Surfaces B: Biointerfaces, 68, 213-217.
https://doi.org/10.1016/j.colsurfb.2008.10.012

[49]   Lin, K.C., Hong, C.P. and Chen, S.M. (2012) Electrocatalytic Oxidation of Alcohols, Sulfides and Hydrogen Peroxide Based on Hybrid Composite of Ruthenium Hexacyanoferrate and Multi-Walled Carbon Nanotubes. International Journal of Electrochemical Science, 7, 11426-11443.

[50]   Zhou, D.M., Ju, H.X. and Chen, H.Y. (1996) Catalytic Oxidation of Dopamine at a Microdisk Platinum Electrode Modified by Electrodeposition of Nickel Hexacyanoferrate and Nafion. Journal of Electroanalytical Chemistry, 408, 219.
https://doi.org/10.1016/0022-0728(95)04522-8

[51]   Pauliukaite, R., Ghica, M.E. and Brett, C.M.A. (2005) A New Improved Sensor for Ascorbate Determination Copper Hexacyanoferrate Modified Carbon Film Electrodes. Analytical and Bioanalytical Chemistry, 381, 972-978.
https://doi.org/10.1007/s00216-004-2958-6

[52]   Vittal, R., Gomathi, H. and Kim, K.J. (2006) Beneficial Role of Surfactants in Electrochemistry and in the Modification of Electrodes. Advances in Colloid and Interface Science, 119, 55-68.
https://doi.org/10.1016/j.cis.2005.09.004

[53]   Wang, Y., Wan, Y. and Zhang, D. (2010) Reduced Graphene Sheets Modified Glassy Carbon Electrode for Electrocatalytic Oxidation of Hydrazine in Alkaline Media. Electrochemistry Communications, 12, 187-190.
https://doi.org/10.1016/j.elecom.2009.11.019

[54]   Ahmar, H., Keshipour, S., Hosseini, H., Fakhari, A.R., Shaabani, A. and Bagheri, A. (2013) Electrocatalytic Oxidation of Hydrazine at Glassy Carbon Electrode Modified with Ethylenediamine Cellulose Immobilized Palladium Nanoparticles. Journal of Electroanalytical Chemistry, 690, 96-103.
https://doi.org/10.1016/j.jelechem.2012.11.031

[55]   Watt, G.W. and Chrisp, J.D. (1952) Spectrophotometric Method for Determination of Hydrazine. Journal of Analytical Chemistry, 24, 2006-2008.
https://doi.org/10.1021/ac60072a044

[56]   Safavi, A. and Karimi, M.A. (2002) Flow Injection Chemiluminescence Determination of Hydrazine by Oxidation with Chlorinated Isocyanurates. Talanta, 16, 785-792.
https://doi.org/10.1016/S0039-9140(02)00362-4

[57]   Sun, M., Bai, L. and Liu, D.Q. (2009) A Generic Approach for the Determination of Trace Hydrazine in Drug Substances Using in Situderivatization-Headspace GC-MS. Journal of Pharmaceutical and Biomedical Analysis, 49, 529-533.
https://doi.org/10.1016/j.jpba.2008.11.009

[58]   Kolodziejczak-Radzimska, A. and Jesionowski, T. (2014) Zinc Oxide-From Synthesis to Application: A Review. Materials, 7, 2833-2881.
https://doi.org/10.3390/ma7042833

[59]   Zhang, X., Sui, Z., Xu, B., Yue, S., Luo, Y., Zhan, W. and Liu, B. (2011) Mechanically Strong and Highly Conductive Graphene Aerogel and Its Use as Electrodes for Electro Chemical Power Sources. Journal of Materials Chemistry, 21, 6494-6497.
https://doi.org/10.1039/c1jm10239g

[60]   Zhu, Z., Li, A., Zhong, S., Liu, F. and Zhang, Q. (2008) Preparation and Characterization of Polymer-Based Spherical Activated Carbons with Tailored Pore Structure. Journal of Applied Polymer Science, 109, 1692-1698.
https://doi.org/10.1002/app.28304

[61]   Babitha, K.B., Matilda, J.J., Mohamed, A.P. and Ananthakumar, S. (2015) Catalytically Engineered Reduced Graphene Oxide/ZnO Hybrid Nanocomposites for the Adsorption, Photoactivity and Selective Oil Pick-Up from Aqueous Media. RSC Advances, 5, 50223-50233.
https://doi.org/10.1039/C5RA04850H

[62]   Ribeiro, D.V., Souza, C.A.C. and Abrantes, J.C.C. (2015) Use of Electrochemical Impedance Spectroscopy (EIS) to Monitoring the Corrosion of Reinforced Concrete. Revista IBRACON de Estruturas e Materiais, 8, 529-546.
https://doi.org/10.1590/S1983-41952015000400007

[63]   Xu, A., Weng, Y. and Zhao, R. (2020) Permeability and Equivalent Circuit Model of Ionically Conductive Mortar Using Electrochemical Workstation. Materials, 13, 1179.
https://doi.org/10.3390/ma13051179

 
 
Top